IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49375-x.html
   My bibliography  Save this article

Plasma cell differentiation is regulated by the expression of histone variant H3.3

Author

Listed:
  • Yuichi Saito

    (Kyushu University
    Kyushu University)

  • Akihito Harada

    (Kyushu University)

  • Miho Ushijima

    (Kyushu University)

  • Kaori Tanaka

    (Kyushu University)

  • Ryota Higuchi

    (Kyushu University
    Kyushu University)

  • Akemi Baba

    (Kyushu University)

  • Daisuke Murakami

    (Kyushu University)

  • Stephen L. Nutt

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Takashi Nakagawa

    (Kyushu University)

  • Yasuyuki Ohkawa

    (Kyushu University)

  • Yoshihiro Baba

    (Kyushu University)

Abstract

The differentiation of B cells into plasma cells is associated with substantial transcriptional and epigenetic remodeling. H3.3 histone variant marks active chromatin via replication-independent nucleosome assembly. However, its role in plasma cell development remains elusive. Herein, we show that during plasma cell differentiation, H3.3 is downregulated, and the deposition of H3.3 and chromatin accessibility are dynamically changed. Blockade of H3.3 downregulation by enforced H3.3 expression impairs plasma cell differentiation in an H3.3-specific sequence-dependent manner. Mechanistically, enforced H3.3 expression inhibits the upregulation of plasma cell-associated genes such as Irf4, Prdm1, and Xbp1 and maintains the expression of B cell-associated genes, Pax5, Bach2, and Bcl6. Concomitantly, sustained H3.3 expression prevents the structure of chromatin accessibility characteristic for plasma cells. Our findings suggest that appropriate H3.3 expression and deposition control plasma cell differentiation.

Suggested Citation

  • Yuichi Saito & Akihito Harada & Miho Ushijima & Kaori Tanaka & Ryota Higuchi & Akemi Baba & Daisuke Murakami & Stephen L. Nutt & Takashi Nakagawa & Yasuyuki Ohkawa & Yoshihiro Baba, 2024. "Plasma cell differentiation is regulated by the expression of histone variant H3.3," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49375-x
    DOI: 10.1038/s41467-024-49375-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49375-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49375-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Willis & Julie Tellier & Yang Liao & Stephanie Trezise & Amanda Light & Kristy O’Donnell & Lee Ann Garrett-Sinha & Wei Shi & David M. Tarlinton & Stephen L. Nutt, 2017. "Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    2. Akihiko Muto & Satoshi Tashiro & Osamu Nakajima & Hideto Hoshino & Satoru Takahashi & Eiichirou Sakoda & Dai Ikebe & Masayuki Yamamoto & Kazuhiko Igarashi, 2004. "The transcriptional programme of antibody class switching involves the repressor Bach2," Nature, Nature, vol. 429(6991), pages 566-571, June.
    3. Andreas M. Reimold & Neal N. Iwakoshi & John Manis & Prashanth Vallabhajosyula & Eva Szomolanyi-Tsuda & Ellen M. Gravallese & Daniel Friend & Michael J. Grusby & Frederick Alt & Laurie H. Glimcher, 2001. "Plasma cell differentiation requires the transcription factor XBP-1," Nature, Nature, vol. 412(6844), pages 300-307, July.
    4. Christopher D. Scharer & Benjamin G. Barwick & Muyao Guo & Alexander P. R. Bally & Jeremy M. Boss, 2018. "Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    5. Carmen Navarro & Jing Lyu & Anna-Maria Katsori & Rozina Caridha & Simon J. Elsässer, 2020. "An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Wing Fuk Chan & Hannah D. Coughlan & Jie H. S. Zhou & Christine R. Keenan & Naiara G. Bediaga & Philip D. Hodgkin & Gordon K. Smyth & Timothy M. Johanson & Rhys S. Allan, 2021. "Pre-mitotic genome re-organisation bookends the B cell differentiation process," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Sophia Groh & Anna Viktoria Milton & Lisa Katherina Marinelli & Cara V. Sickinger & Angela Russo & Heike Bollig & Gustavo Pereira de Almeida & Andreas Schmidt & Ignasi Forné & Axel Imhof & Gunnar Scho, 2021. "Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Nicholas W. Chavkin & Gael Genet & Mathilde Poulet & Erin D. Jeffery & Corina Marziano & Nafiisha Genet & Hema Vasavada & Elizabeth A. Nelson & Bipul R. Acharya & Anupreet Kour & Jordon Aragon & Steph, 2022. "Endothelial cell cycle state determines propensity for arterial-venous fate," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Ki Oh & Yun Jae Yoo & Luke A. Torre-Healy & Manisha Rao & Danielle Fassler & Pei Wang & Michael Caponegro & Mei Gao & Joseph Kim & Aaron Sasson & Georgios Georgakis & Scott Powers & Richard A. Moffitt, 2023. "Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Vladimir Potapov & Jenifer B Kaplan & Amy E Keating, 2015. "Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-28, February.
    6. Kathryn Weinand & Saori Sakaue & Aparna Nathan & Anna Helena Jonsson & Fan Zhang & Gerald F. M. Watts & Majd Al Suqri & Zhu Zhu & Deepak A. Rao & Jennifer H. Anolik & Michael B. Brenner & Laura T. Don, 2024. "The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    7. Jianfeng Wu & Kang Yang & Shaowei Cai & Xiaohan Zhang & Lichen Hu & Fanjia Lin & Su-qin Wu & Changchun Xiao & Wen-Hsien Liu & Jiahuai Han, 2022. "A p38α-BLIMP1 signalling pathway is essential for plasma cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Tea Babushku & Markus Lechner & Stefanie Ehrenberg & Ursula Rambold & Marc Schmidt-Supprian & Andrew J. Yates & Sanket Rane & Ursula Zimber-Strobl & Lothar J. Strobl, 2024. "Notch2 controls developmental fate choices between germinal center and marginal zone B cells upon immunization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. JangKeun Kim & Braden T. Tierney & Eliah G. Overbey & Ezequiel Dantas & Matias Fuentealba & Jiwoon Park & S. Anand Narayanan & Fei Wu & Deena Najjar & Christopher R. Chin & Cem Meydan & Conor Loy & Be, 2024. "Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49375-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.