IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6844d10.1038_35085509.html
   My bibliography  Save this article

Plasma cell differentiation requires the transcription factor XBP-1

Author

Listed:
  • Andreas M. Reimold

    (Harvard School of Public Health
    Harvard Medical School
    University of Texas Southwestern Medical Center at Dallas)

  • Neal N. Iwakoshi

    (Harvard School of Public Health)

  • John Manis

    (Howard Hughes Medical Institute, Children's Hospital)

  • Prashanth Vallabhajosyula

    (Harvard School of Public Health)

  • Eva Szomolanyi-Tsuda

    (University of Massachusetts Medical School)

  • Ellen M. Gravallese

    (Beth Israel Deaconess Medical Center)

  • Daniel Friend

    (Harvard Medical School)

  • Michael J. Grusby

    (Harvard School of Public Health
    Harvard Medical School)

  • Frederick Alt

    (Howard Hughes Medical Institute, Children's Hospital)

  • Laurie H. Glimcher

    (Harvard School of Public Health
    Harvard Medical School)

Abstract

Considerable progress has been made in identifying the transcription factors involved in the early specification of the B-lymphocyte lineage. However, little is known about factors that control the transition of mature activated B cells to antibody-secreting plasma cells. Here we report that the transcription factor XBP-1 is required for the generation of plasma cells. XBP-1 transcripts were rapidly upregulated in vitro by stimuli that induce plasma-cell differentiation, and were found at high levels in plasma cells from rheumatoid synovium. When introduced into B-lineage cells, XBP-1 initiated plasma-cell differentiation. Mouse lymphoid chimaeras deficient in XBP-1 possessed normal numbers of activated B lymphocytes that proliferated, secreted cytokines and formed normal germinal centres. However, they secreted very little immunoglobulin of any isotype and failed to control infection with the B-cell-dependent polyoma virus, because plasma cells were markedly absent. XBP-1 is the only transcription factor known to be selectively and specifically required for the terminal differentiation of B lymphocytes to plasma cells.

Suggested Citation

  • Andreas M. Reimold & Neal N. Iwakoshi & John Manis & Prashanth Vallabhajosyula & Eva Szomolanyi-Tsuda & Ellen M. Gravallese & Daniel Friend & Michael J. Grusby & Frederick Alt & Laurie H. Glimcher, 2001. "Plasma cell differentiation requires the transcription factor XBP-1," Nature, Nature, vol. 412(6844), pages 300-307, July.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6844:d:10.1038_35085509
    DOI: 10.1038/35085509
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35085509
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35085509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Potapov & Jenifer B Kaplan & Amy E Keating, 2015. "Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-28, February.
    2. Jianfeng Wu & Kang Yang & Shaowei Cai & Xiaohan Zhang & Lichen Hu & Fanjia Lin & Su-qin Wu & Changchun Xiao & Wen-Hsien Liu & Jiahuai Han, 2022. "A p38α-BLIMP1 signalling pathway is essential for plasma cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Ki Oh & Yun Jae Yoo & Luke A. Torre-Healy & Manisha Rao & Danielle Fassler & Pei Wang & Michael Caponegro & Mei Gao & Joseph Kim & Aaron Sasson & Georgios Georgakis & Scott Powers & Richard A. Moffitt, 2023. "Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6844:d:10.1038_35085509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.