IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21536-2.html
   My bibliography  Save this article

Pre-mitotic genome re-organisation bookends the B cell differentiation process

Author

Listed:
  • Wing Fuk Chan

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Hannah D. Coughlan

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Jie H. S. Zhou

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Christine R. Keenan

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Naiara G. Bediaga

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Philip D. Hodgkin

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Gordon K. Smyth

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Timothy M. Johanson

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

  • Rhys S. Allan

    (The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne)

Abstract

During cellular differentiation chromosome conformation is intricately remodelled to support the lineage-specific transcriptional programs required for initiating and maintaining lineage identity. When these changes occur in relation to cell cycle, division and time in response to cellular activation and differentiation signals has yet to be explored, although it has been proposed to occur during DNA synthesis or after mitosis. Here, we elucidate the chromosome conformational changes in B lymphocytes as they differentiate and expand from a naive, quiescent state into antibody secreting plasma cells. We find gene-regulatory chromosome reorganization in late G1 phase before the first division, and that this configuration is remarkably stable as the cells massively and rapidly clonally expand. A second wave of conformational change occurs as cells terminally differentiate into plasma cells, coincident with increased time in G1 phase. These results provide further explanation for how lymphocyte fate is imprinted prior to the first division. They also suggest that chromosome reconfiguration occurs prior to DNA replication and mitosis, and is linked to a gene expression program that controls the differentiation process required for the generation of immunity.

Suggested Citation

  • Wing Fuk Chan & Hannah D. Coughlan & Jie H. S. Zhou & Christine R. Keenan & Naiara G. Bediaga & Philip D. Hodgkin & Gordon K. Smyth & Timothy M. Johanson & Rhys S. Allan, 2021. "Pre-mitotic genome re-organisation bookends the B cell differentiation process," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21536-2
    DOI: 10.1038/s41467-021-21536-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21536-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21536-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Saito & Akihito Harada & Miho Ushijima & Kaori Tanaka & Ryota Higuchi & Akemi Baba & Daisuke Murakami & Stephen L. Nutt & Takashi Nakagawa & Yasuyuki Ohkawa & Yoshihiro Baba, 2024. "Plasma cell differentiation is regulated by the expression of histone variant H3.3," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Tea Babushku & Markus Lechner & Stefanie Ehrenberg & Ursula Rambold & Marc Schmidt-Supprian & Andrew J. Yates & Sanket Rane & Ursula Zimber-Strobl & Lothar J. Strobl, 2024. "Notch2 controls developmental fate choices between germinal center and marginal zone B cells upon immunization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Nicholas W. Chavkin & Gael Genet & Mathilde Poulet & Erin D. Jeffery & Corina Marziano & Nafiisha Genet & Hema Vasavada & Elizabeth A. Nelson & Bipul R. Acharya & Anupreet Kour & Jordon Aragon & Steph, 2022. "Endothelial cell cycle state determines propensity for arterial-venous fate," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21536-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.