IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49304-y.html
   My bibliography  Save this article

All-optical phase conjugation using diffractive wavefront processing

Author

Listed:
  • Che-Yung Shen

    (University of California
    University of California
    University of California)

  • Jingxi Li

    (University of California
    University of California
    University of California)

  • Tianyi Gan

    (University of California
    University of California)

  • Yuhang Li

    (University of California
    University of California
    University of California)

  • Mona Jarrahi

    (University of California
    University of California)

  • Aydogan Ozcan

    (University of California
    University of California
    University of California)

Abstract

Optical phase conjugation (OPC) is a nonlinear technique used for counteracting wavefront distortions, with applications ranging from imaging to beam focusing. Here, we present a diffractive wavefront processor to approximate all-optical phase conjugation. Leveraging deep learning, a set of diffractive layers was optimized to all-optically process an arbitrary phase-aberrated input field, producing an output field with a phase distribution that is the conjugate of the input wave. We experimentally validated this wavefront processor by 3D-fabricating diffractive layers and performing OPC on phase distortions never seen during training. Employing terahertz radiation, our diffractive processor successfully performed OPC through a shallow volume that axially spans tens of wavelengths. We also created a diffractive phase-conjugate mirror by combining deep learning-optimized diffractive layers with a standard mirror. Given its compact, passive and multi-wavelength nature, this diffractive wavefront processor can be used for various applications, e.g., turbidity suppression and aberration correction across different spectral bands.

Suggested Citation

  • Che-Yung Shen & Jingxi Li & Tianyi Gan & Yuhang Li & Mona Jarrahi & Aydogan Ozcan, 2024. "All-optical phase conjugation using diffractive wavefront processing," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49304-y
    DOI: 10.1038/s41467-024-49304-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49304-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49304-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Liu & Puxiang Lai & Cheng Ma & Xiao Xu & Alexander A. Grabar & Lihong V. Wang, 2015. "Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    2. Muhammed Veli & Deniz Mengu & Nezih T. Yardimci & Yi Luo & Jingxi Li & Yair Rivenson & Mona Jarrahi & Aydogan Ozcan, 2021. "Terahertz pulse shaping using diffractive surfaces," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Meng & Youwei Zhang & Xichang Zhang & Shenchao Jin & Tingran Wang & Liang Jiang & Liantuan Xiao & Suotang Jia & Yanhong Xiao, 2023. "Machine learning assisted vector atomic magnetometry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jingxi Li & Xurong Li & Nezih T. Yardimci & Jingtian Hu & Yuhang Li & Junjie Chen & Yi-Chun Hung & Mona Jarrahi & Aydogan Ozcan, 2023. "Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Alexa Herter & Amirhassan Shams-Ansari & Francesca Fabiana Settembrini & Hana K. Warner & Jérôme Faist & Marko Lončar & Ileana-Cristina Benea-Chelmus, 2023. "Terahertz waveform synthesis in integrated thin-film lithium niobate platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49304-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.