IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49229-6.html
   My bibliography  Save this article

Structural basis of promoter recognition by Staphylococcus aureus RNA polymerase

Author

Listed:
  • Linggang Yuan

    (Zhejiang University School of Medicine)

  • Qingyang Liu

    (Zhejiang University School of Medicine)

  • Liqiao Xu

    (Zhejiang University School of Medicine)

  • Bing Wu

    (Fudan University
    Fudan University)

  • Yu Feng

    (Zhejiang University School of Medicine
    Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province)

Abstract

Bacterial RNAP needs to form holoenzyme with σ factors to initiate transcription. While Staphylococcus aureus σA controls housekeeping functions, S. aureus σB regulates virulence, biofilm formation, persistence, cell internalization, membrane transport, and antimicrobial resistance. Besides the sequence difference, the spacers between the −35 element and −10 element of σB regulated promoters are shorter than those of σA regulated promoters. Therefore, how σB recognizes and initiates transcription from target promoters can not be inferred from that of the well studied σ. Here, we report the cryo-EM structures of S. aureus RNAP-promoter open complexes comprising σA and σB, respectively. Structural analyses, in combination with biochemical experiments, reveal the structural basis for the promoter specificity of S. aureus transcription. Although the −10 element of σA regulated promoters is recognized by domain σA2 as single-stranded DNA, the −10 element of σB regulated promoters is co-recognized by domains σB2 and σB3 as double-stranded DNA, accounting for the short spacers of σB regulated promoters. S. aureus RNAP is a validated target of antibiotics, and our structures pave the way for rational drug design targeting S. aureus RNAP.

Suggested Citation

  • Linggang Yuan & Qingyang Liu & Liqiao Xu & Bing Wu & Yu Feng, 2024. "Structural basis of promoter recognition by Staphylococcus aureus RNA polymerase," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49229-6
    DOI: 10.1038/s41467-024-49229-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49229-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49229-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dingwei He & Linlin You & Xiaoxian Wu & Jing Shi & Aijia Wen & Zhi Yan & Wenhui Mu & Chengli Fang & Yu Feng & Yu Zhang, 2022. "Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    3. Timothy P. Newing & Aaron J. Oakley & Michael Miller & Catherine J. Dawson & Simon H. J. Brown & James C. Bouwer & Gökhan Tolun & Peter J. Lewis, 2020. "Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Hande Boyaci & James Chen & Rolf Jansen & Seth A. Darst & Elizabeth A. Campbell, 2019. "Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding," Nature, Nature, vol. 565(7739), pages 382-385, January.
    5. Lingting Li & Chengli Fang & Ningning Zhuang & Tiantian Wang & Yu Zhang, 2019. "Structural basis for transcription initiation by bacterial ECF σ factors," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    6. Yeonoh Shin & M. Zuhaib Qayyum & Danil Pupov & Daria Esyunina & Andrey Kulbachinskiy & Katsuhiko S. Murakami, 2021. "Structural basis of ribosomal RNA transcription regulation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Li & Haonan Zhang & Dongyu Li & Ya-Jun Liu & Edward A. Bayer & Qiu Cui & Yingang Feng & Ping Zhu, 2023. "Structure of the transcription open complex of distinct σI factors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Dingwei He & Linlin You & Xiaoxian Wu & Jing Shi & Aijia Wen & Zhi Yan & Wenhui Mu & Chengli Fang & Yu Feng & Yu Zhang, 2022. "Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Alec Fraser & Maria L. Sokolova & Arina V. Drobysheva & Julia V. Gordeeva & Sergei Borukhov & John Jumper & Konstantin V. Severinov & Petr G. Leiman, 2022. "Structural basis of template strand deoxyuridine promoter recognition by a viral RNA polymerase," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    5. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    12. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49229-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.