IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48734-y.html
   My bibliography  Save this article

Lipidome atlas of the adult human brain

Author

Listed:
  • Maria Osetrova

    (Skolkovo Institute of Science and Technology)

  • Anna Tkachev

    (Skolkovo Institute of Science and Technology)

  • Waltraud Mair

    (Skolkovo Institute of Science and Technology)

  • Patricia Guijarro Larraz

    (Skolkovo Institute of Science and Technology)

  • Olga Efimova

    (Skolkovo Institute of Science and Technology)

  • Ilia Kurochkin

    (Skolkovo Institute of Science and Technology)

  • Elena Stekolshchikova

    (Skolkovo Institute of Science and Technology)

  • Nickolay Anikanov

    (Skolkovo Institute of Science and Technology)

  • Juat Chin Foo

    (Yong Loo Lin School of Medicine; National University of Singapore)

  • Amaury Cazenave-Gassiot

    (Yong Loo Lin School of Medicine; National University of Singapore)

  • Aleksandra Mitina

    (Skolkovo Institute of Science and Technology)

  • Polina Ogurtsova

    (Skolkovo Institute of Science and Technology)

  • Song Guo

    (Skolkovo Institute of Science and Technology)

  • Daria M. Potashnikova

    (Lomonosov Moscow State University)

  • Alexander A. Gulin

    (N. N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences)

  • Alexander A. Vasin

    (N. N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences
    Lomonosov Moscow State University)

  • Anastasia Sarycheva

    (Skolkovo Institute of Science and Technology)

  • Gleb Vladimirov

    (Skolkovo Institute of Science and Technology)

  • Maria Fedorova

    (Leipzig University)

  • Yury Kostyukevich

    (Skolkovo Institute of Science and Technology)

  • Evgeny Nikolaev

    (Skolkovo Institute of Science and Technology)

  • Markus R. Wenk

    (Yong Loo Lin School of Medicine; National University of Singapore)

  • Ekaterina E. Khrameeva

    (Skolkovo Institute of Science and Technology)

  • Philipp Khaitovich

    (Skolkovo Institute of Science and Technology)

Abstract

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain’s structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.

Suggested Citation

  • Maria Osetrova & Anna Tkachev & Waltraud Mair & Patricia Guijarro Larraz & Olga Efimova & Ilia Kurochkin & Elena Stekolshchikova & Nickolay Anikanov & Juat Chin Foo & Amaury Cazenave-Gassiot & Aleksan, 2024. "Lipidome atlas of the adult human brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48734-y
    DOI: 10.1038/s41467-024-48734-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48734-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48734-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Vanni & Hisaaki Hirose & Hélène Barelli & Bruno Antonny & Romain Gautier, 2014. "A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    2. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    3. Jun Ding & Jian Ji & Zachary Rabow & Tong Shen & Jacob Folz & Christopher R. Brydges & Sili Fan & Xinchen Lu & Sajjan Mehta & Megan R. Showalter & Ying Zhang & Renee Araiza & Lynette R. Bower & K. C. , 2021. "A metabolome atlas of the aging mouse brain," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Michael J. Hawrylycz & Ed S. Lein & Angela L. Guillozet-Bongaarts & Elaine H. Shen & Lydia Ng & Jeremy A. Miller & Louie N. van de Lagemaat & Kimberly A. Smith & Amanda Ebbert & Zackery L. Riley & Chr, 2012. "An anatomically comprehensive atlas of the adult human brain transcriptome," Nature, Nature, vol. 489(7416), pages 391-399, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Svenja Küchenhoff & Şeyma Bayrak & Rachel G. Zsido & Amin Saberi & Boris C. Bernhardt & Susanne Weis & H. Lina Schaare & Julia Sacher & Simon Eickhoff & Sofie L. Valk, 2024. "Relating sex-bias in human cortical and hippocampal microstructure to sex hormones," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Aleksandr Talishinsky & Jonathan Downar & Petra E. Vértes & Jakob Seidlitz & Katharine Dunlop & Charles J. Lynch & Heather Whalley & Andrew McIntosh & Fidel Vila-Rodriguez & Zafiris J. Daskalakis & Da, 2022. "Regional gene expression signatures are associated with sex-specific functional connectivity changes in depression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Junjiao Feng & Liang Zhang & Chunhui Chen & Jintao Sheng & Zhifang Ye & Kanyin Feng & Jing Liu & Ying Cai & Bi Zhu & Zhaoxia Yu & Chuansheng Chen & Qi Dong & Gui Xue, 2022. "A cognitive neurogenetic approach to uncovering the structure of executive functions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    9. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    11. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    12. Ann Hillier & Ryan P Kelly & Terrie Klinger, 2016. "Narrative Style Influences Citation Frequency in Climate Change Science," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    13. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Alexia Stollmann & Jose Garcia-Guirado & Jae-Sang Hong & Pascal Rüedi & Hyungsoon Im & Hakho Lee & Jaime Ortega Arroyo & Romain Quidant, 2024. "Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    16. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    18. Natalie Weed & Trygve Bakken & Nile Graddis & Nathan Gouwens & Daniel Millman & Michael Hawrylycz & Jack Waters, 2019. "Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
    19. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Lynne Krohn & Karl Heilbron & Cornelis Blauwendraat & Regina H. Reynolds & Eric Yu & Konstantin Senkevich & Uladzislau Rudakou & Mehrdad A. Estiar & Emil K. Gustavsson & Kajsa Brolin & Jennifer A. Rus, 2022. "Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48734-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.