IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v464y2010i7286d10.1038_nature08876.html
   My bibliography  Save this article

Transmission of electrical signals by spin-wave interconversion in a magnetic insulator

Author

Listed:
  • Y. Kajiwara

    (Institute for Materials Research, Tohoku University
    Keio University)

  • K. Harii

    (Institute for Materials Research, Tohoku University)

  • S. Takahashi

    (Institute for Materials Research, Tohoku University
    CREST,)

  • J. Ohe

    (Institute for Materials Research, Tohoku University
    CREST,)

  • K. Uchida

    (Institute for Materials Research, Tohoku University)

  • M. Mizuguchi

    (Institute for Materials Research, Tohoku University)

  • H. Umezawa

    (FDK Corporation)

  • H. Kawai

    (FDK Corporation)

  • K. Ando

    (Institute for Materials Research, Tohoku University
    Keio University)

  • K. Takanashi

    (Institute for Materials Research, Tohoku University)

  • S. Maekawa

    (Institute for Materials Research, Tohoku University
    CREST,)

  • E. Saitoh

    (Institute for Materials Research, Tohoku University
    Keio University
    PRESTO, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan)

Abstract

Spinning a message An insulator does not conduct electricity, and so cannot in general be used to transmit an electrical signal. However, the electrons within an insulator possess spin as well as charge, so it is possible for them to transmit a signal in the form of a spin wave. Kajiwara et al. have now developed a hybrid metal–insulator–metal structure in which an electrical signal in one metal layer is directly converted to a spin wave in the insulating layer. This wave is then transmitted to the second metal layer, where the signal can be directly recovered as an electrical voltage. The observation of voltage transmission in an insulator raises the prospect of insulator-based spintronics and other novel forms of signal delivery.

Suggested Citation

  • Y. Kajiwara & K. Harii & S. Takahashi & J. Ohe & K. Uchida & M. Mizuguchi & H. Umezawa & H. Kawai & K. Ando & K. Takanashi & S. Maekawa & E. Saitoh, 2010. "Transmission of electrical signals by spin-wave interconversion in a magnetic insulator," Nature, Nature, vol. 464(7286), pages 262-266, March.
  • Handle: RePEc:nat:nature:v:464:y:2010:i:7286:d:10.1038_nature08876
    DOI: 10.1038/nature08876
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08876
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongru Wang & Jing Meng & Jianjun Lin & Bin Xu & Hai Ma & Yucheng Kan & Rui Chen & Lujun Huang & Ye Chen & Fangyu Yue & Chun-Gang Duan & Junhao Chu & Lin Sun, 2024. "Origin of the light-induced spin currents in heavy metal/magnetic insulator bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Song Bao & Zhao-Long Gu & Yanyan Shangguan & Zhentao Huang & Junbo Liao & Xiaoxue Zhao & Bo Zhang & Zhao-Yang Dong & Wei Wang & Ryoichi Kajimoto & Mitsutaka Nakamura & Tom Fennell & Shun-Li Yu & Jian-, 2023. "Direct observation of topological magnon polarons in a multiferroic material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Man Yang & Liang Sun & Yulun Zeng & Jun Cheng & Kang He & Xi Yang & Ziqiang Wang & Longqian Yu & Heng Niu & Tongzhou Ji & Gong Chen & Bingfeng Miao & Xiangrong Wang & Haifeng Ding, 2024. "Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Kun Xu & Ting Lin & Yiheng Rao & Ziqiang Wang & Qinghui Yang & Huaiwu Zhang & Jing Zhu, 2022. "Direct investigation of the atomic structure and decreased magnetism of antiphase boundaries in garnet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:464:y:2010:i:7286:d:10.1038_nature08876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.