Live-animal imaging of native haematopoietic stem and progenitor cells
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-020-1971-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yinghui Li & Mei He & Wenshan Zhang & Wei Liu & Hui Xu & Ming Yang & Hexiao Zhang & Haiwei Liang & Wenjing Li & Zhaozhao Wu & Weichao Fu & Shiqi Xu & Xiaolei Liu & Sibin Fan & Liwei Zhou & Chaoqun Wan, 2023. "Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- S-C. A. Yeh & J. Hou & J. W. Wu & S. Yu & Y. Zhang & K. D. Belfield & F. D. Camargo & C. P. Lin, 2022. "Quantification of bone marrow interstitial pH and calcium concentration by intravital ratiometric imaging," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Yang Ping Kuo & César Nombela-Arrieta & Oana Carja, 2024. "A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Raquel S. Pereira & Rahul Kumar & Alessia Cais & Lara Paulini & Alisa Kahler & Jimena Bravo & Valentina R. Minciacchi & Theresa Krack & Eric Kowarz & Costanza Zanetti & Parimala Sonika Godavarthy & Fa, 2023. "Distinct and targetable role of calcium-sensing receptor in leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:578:y:2020:i:7794:d:10.1038_s41586-020-1971-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.