IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48156-w.html
   My bibliography  Save this article

Discovering allatostatin type-C receptor specific agonists

Author

Listed:
  • Kübra Kahveci

    (Boğaziçi University)

  • Mustafa Barbaros Düzgün

    (Boğaziçi University)

  • Abdullah Emre Atis

    (Plant Protection Central Research Institute)

  • Abdullah Yılmaz

    (Plant Protection Central Research Institute)

  • Aida Shahraki

    (Boğaziçi University
    The Philipp University of Marburg)

  • Basak Coskun

    (Plant Protection Central Research Institute)

  • Serdar Durdagi

    (Bahçeşehir University
    School of Medicine, Bahçeşehir University
    Bahçeşehir University)

  • Necla Birgul Iyison

    (Boğaziçi University)

Abstract

Currently, there is no pesticide available for the selective control of the pine processionary moth (Thaumetopoea pityocampa-specific), and conventional methods typically rely on mechanical techniques such as pheromone traps or broad-spectrum larvicidal chemicals. As climate change increases the range and dispersion capacity of crop and forest pests, outbreaks of the pine processionary occur with greater frequency and significantly impact forestry and public health. Our study is carried out to provide a T. pityocampa-specific pesticide targeting the Allatostatin Type-C Receptor (AlstR-C). We use a combination of computational biology methods, a cell-based screening assay, and in vivo toxicity and side effect assays to identify, for the first time, a series of AlstR-C ligands suitable for use as T. pityocampa-specific insecticides. We further demonstrate that the novel AlstR-C targeted agonists are specific to lepidopteran larvae, with no harmful effects on coleopteran larvae or adults. Overall, our study represents an important initial advance toward an insect GPCR-targeted next-generation pesticide design. Our approach may apply to other invertebrate GPCRs involved in vital metabolic pathways.

Suggested Citation

  • Kübra Kahveci & Mustafa Barbaros Düzgün & Abdullah Emre Atis & Abdullah Yılmaz & Aida Shahraki & Basak Coskun & Serdar Durdagi & Necla Birgul Iyison, 2024. "Discovering allatostatin type-C receptor specific agonists," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48156-w
    DOI: 10.1038/s41467-024-48156-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48156-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48156-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Şeyma Yigit & Islam Saruhan & Izzet Akça, 2019. "The effect of some commercial plant oils on the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(8), pages 309-312.
    2. Olga Kubrak & Takashi Koyama & Nadja Ahrentløv & Line Jensen & Alina Malita & Muhammad T. Naseem & Mette Lassen & Stanislav Nagy & Michael J. Texada & Kenneth V. Halberg & Kim Rewitz, 2022. "The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjun Gao & Song Zhang & Pan Deng & Zhigang Wu & Bruno Lemaitre & Zongzhao Zhai & Zheng Guo, 2024. "Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Chen Zhang & Anmo J. Kim & Crisalesandra Rivera-Perez & Fernando G. Noriega & Young-Joon Kim, 2022. "The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Olga Kubrak & Anne F. Jørgensen & Takashi Koyama & Mette Lassen & Stanislav Nagy & Jacob Hald & Gianluca Mazzoni & Dennis Madsen & Jacob B. Hansen & Martin Røssel Larsen & Michael J. Texada & Jakob L., 2024. "LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48156-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.