IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48035-4.html
   My bibliography  Save this article

Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4

Author

Listed:
  • Yan Liu

    (University of Science and Technology of China)

  • Jie Wei

    (University of Science and Technology of China)

  • Zhengwu Yang

    (University of Science and Technology of China)

  • Lirong Zheng

    (Chinese Academy of Sciences)

  • Jiankang Zhao

    (University of Science and Technology of China)

  • Zhimin Song

    (University of Science and Technology of China)

  • Yuhan Zhou

    (University of Science and Technology of China)

  • Jiajie Cheng

    (University of Science and Technology of China)

  • Junyang Meng

    (University of Science and Technology of China)

  • Zhigang Geng

    (University of Science and Technology of China)

  • Jie Zeng

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China
    Anhui University of Technology)

Abstract

The nitrate (NO3−) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3− adsorption, one of the key issues lies in the accumulation of nitrite (NO2−) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3− to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg $${}_{{{{{{\rm{NH}}}}}}_3}$$ NH 3 h−1 cm−2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2− and strengthens the binding with NO2−, thus accelerating the electroreduction of NO3− to NH3.

Suggested Citation

  • Yan Liu & Jie Wei & Zhengwu Yang & Lirong Zheng & Jiankang Zhao & Zhimin Song & Yuhan Zhou & Jiajie Cheng & Junyang Meng & Zhigang Geng & Jie Zeng, 2024. "Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48035-4
    DOI: 10.1038/s41467-024-48035-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48035-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48035-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qinglei Meng & Jiang Yan & Ruizhi Wu & Huizhen Liu & Yang Sun & NingNing Wu & Junfeng Xiang & Lirong Zheng & Jing Zhang & Buxing Han, 2021. "Sustainable production of benzene from lignin," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Shengnan Sun & Chencheng Dai & Peng Zhao & Shibo Xi & Yi Ren & Hui Ru Tan & Poh Chong Lim & Ming Lin & Caozheng Diao & Danwei Zhang & Chao Wu & Anke Yu & Jie Cheng Jackson Koh & Wei Ying Lieu & Debbie, 2024. "Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Wei Liu & Mengyang Xia & Chao Zhao & Ben Chong & Jiahe Chen & He Li & Honghui Ou & Guidong Yang, 2024. "Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Cao, Yang & He, Mingjing & Dutta, Shanta & Luo, Gang & Zhang, Shicheng & Tsang, Daniel C.W., 2021. "Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Zhengwei Cai & Jie Liang & Zixiao Li & Tingyu Yan & Chaoxin Yang & Shengjun Sun & Meng Yue & Xuwei Liu & Ting Xie & Yan Wang & Tingshuai Li & Yongsong Luo & Dongdong Zheng & Qian Liu & Jingxiang Zhao , 2024. "Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Yining Sun & Kui Fan & Jinze Li & Lei Wang & Yusen Yang & Zhenhua Li & Mingfei Shao & Xue Duan, 2024. "Boosting electrochemical oxygen reduction to hydrogen peroxide coupled with organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Li, Chang & Wang, Yishuang & Tang, Zhiyuan & Zhou, Zinan & Qin, Baolong & Chen, Mingqiang, 2023. "The bifunctional active sites on carbon supported Fe-Mo bimetallic catalyst to improve Kraft lignin liquefaction," Renewable Energy, Elsevier, vol. 219(P2).
    20. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48035-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.