IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24780-8.html
   My bibliography  Save this article

Sustainable production of benzene from lignin

Author

Listed:
  • Qinglei Meng

    (Chinese Academy of Sciences)

  • Jiang Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ruizhi Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huizhen Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Sun

    (Chinese Academy of Sciences)

  • NingNing Wu

    (Chinese Academy of Sciences)

  • Junfeng Xiang

    (Chinese Academy of Sciences)

  • Lirong Zheng

    (Chinese Academy of Sciences)

  • Jing Zhang

    (Chinese Academy of Sciences)

  • Buxing Han

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    East China Normal University)

Abstract

Benzene is a widely used commodity chemical, which is currently produced from fossil resources. Lignin, a waste from lignocellulosic biomass industry, is the most abundant renewable source of benzene ring in nature. Efficient production of benzene from lignin, which requires total transformation of Csp2-Csp3/Csp2-O into C-H bonds without side hydrogenation, is of great importance, but has not been realized. Here, we report that high-silica HY zeolite supported RuW alloy catalyst enables in situ refining of lignin, exclusively to benzene via coupling Bronsted acid catalyzed transformation of the Csp2-Csp3 bonds on the local structure of lignin molecule and RuW catalyzed hydrogenolysis of the Csp2-O bonds using the locally abstracted hydrogen from lignin molecule, affording a benzene yield of 18.8% on lignin weight basis in water system. The reaction mechanism is elucidated in detail by combination of control experiments and density functional theory calculations. The high-performance protocol can be readily scaled up to produce 8.5 g of benzene product from 50.0 g lignin without any saturation byproducts. This work opens the way to produce benzene using lignin as the feedstock efficiently.

Suggested Citation

  • Qinglei Meng & Jiang Yan & Ruizhi Wu & Huizhen Liu & Yang Sun & NingNing Wu & Junfeng Xiang & Lirong Zheng & Jing Zhang & Buxing Han, 2021. "Sustainable production of benzene from lignin," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24780-8
    DOI: 10.1038/s41467-021-24780-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24780-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24780-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Cao, Yang & He, Mingjing & Dutta, Shanta & Luo, Gang & Zhang, Shicheng & Tsang, Daniel C.W., 2021. "Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Lin Dong & Yanqin Wang & Yuguo Dong & Yin Zhang & Mingzhu Pan & Xiaohui Liu & Xiaoli Gu & Markus Antonietti & Zupeng Chen, 2023. "Sustainable production of dopamine hydrochloride from softwood lignin," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yan Liu & Jie Wei & Zhengwu Yang & Lirong Zheng & Jiankang Zhao & Zhimin Song & Yuhan Zhou & Jiajie Cheng & Junyang Meng & Zhigang Geng & Jie Zeng, 2024. "Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Li, Chang & Wang, Yishuang & Tang, Zhiyuan & Zhou, Zinan & Qin, Baolong & Chen, Mingqiang, 2023. "The bifunctional active sites on carbon supported Fe-Mo bimetallic catalyst to improve Kraft lignin liquefaction," Renewable Energy, Elsevier, vol. 219(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24780-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.