IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47916-y.html
   My bibliography  Save this article

Sub-millisecond lithiothermal synthesis of graphitic meso–microporous carbon

Author

Listed:
  • Huimin Zhang

    (Research Institute of Chemical Defense)

  • Jingyi Qiu

    (Research Institute of Chemical Defense)

  • Jie Pang

    (Henan University)

  • Gaoping Cao

    (Research Institute of Chemical Defense)

  • Bingsen Zhang

    (Chinese Academy of Sciences)

  • Li Wang

    (Tsinghua University)

  • Xiangming He

    (Tsinghua University)

  • Xuning Feng

    (Tsinghua University)

  • Shizhou Ma

    (Research Institute of Chemical Defense)

  • Xinggao Zhang

    (Research Institute of Chemical Defense)

  • Hai Ming

    (Research Institute of Chemical Defense)

  • Zhuangnan Li

    (University of Cambridge)

  • Feng Li

    (Chinese Academy of Sciences)

  • Hao Zhang

    (Research Institute of Chemical Defense)

Abstract

Porous carbons with concurrently high specific surface area and electronic conductivity are desirable by virtue of their desirable electron and ion transport ability, but conventional preparing methods suffer from either low yield or inferior quality carbons. Here we developed a lithiothermal approach to bottom–up synthesize highly meso–microporous graphitized carbon (MGC). The preparation can be finished in a few milliseconds by the self-propagating reaction between polytetrafluoroethylene powder and molten lithium (Li) metal, during which instant ultra-high temperature (>3000 K) was produced. This instantaneous carbon vaporization and condensation at ultra-high temperatures and in ultra-short duration enable the MGC to show a highly graphitized and continuously cross-coupled open pore structure. MGC displays superior electrochemical capacitor performance of exceptional power capability and ultralong-term cyclability. The processes used to make this carbon are readily scalable to industrial levels.

Suggested Citation

  • Huimin Zhang & Jingyi Qiu & Jie Pang & Gaoping Cao & Bingsen Zhang & Li Wang & Xiangming He & Xuning Feng & Shizhou Ma & Xinggao Zhang & Hai Ming & Zhuangnan Li & Feng Li & Hao Zhang, 2024. "Sub-millisecond lithiothermal synthesis of graphitic meso–microporous carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47916-y
    DOI: 10.1038/s41467-024-47916-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47916-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47916-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    2. Sang Hoon Joo & Seong Jae Choi & Ilwhan Oh & Juhyoun Kwak & Zheng Liu & Osamu Terasaki & Ryong Ryoo, 2001. "Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles," Nature, Nature, vol. 412(6843), pages 169-172, July.
    3. Sang Hoon Joo & Seong Jae Choi & Ilwhan Oh & Juhyoun Kwak & Zheng Liu & Osamu Terasaki & Ryong Ryoo, 2001. "Correction: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles," Nature, Nature, vol. 414(6862), pages 470-470, November.
    4. Kyoungsoo Kim & Taekyoung Lee & Yonghyun Kwon & Yongbeom Seo & Jongchan Song & Jung Ki Park & Hyunsoo Lee & Jeong Young Park & Hyotcherl Ihee & Sung June Cho & Ryong Ryoo, 2016. "Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template," Nature, Nature, vol. 535(7610), pages 131-135, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Jin Ham & Jae Sung Lee, 2009. "Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-27, October.
    2. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    3. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.
    4. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
    5. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    6. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    7. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
    11. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    17. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    18. Irina Stenina & Ruslan Shaydullin & Tatiana Kulova & Anna Kuz’mina & Nataliya Tabachkova & Andrey Yaroslavtsev, 2020. "Effect of Carbon Additives on the Electrochemical Performance of Li 4 Ti 5 O 12 /C Anodes," Energies, MDPI, vol. 13(15), pages 1-15, August.
    19. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    20. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47916-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.