IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6843d10.1038_35084046.html
   My bibliography  Save this article

Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles

Author

Listed:
  • Sang Hoon Joo

    (Korea Advanced Institute of Science and Technology)

  • Seong Jae Choi

    (Korea Advanced Institute of Science and Technology)

  • Ilwhan Oh

    (Electrochemistry Laboratory, Korea Advanced Institute of Science and Technology)

  • Juhyoun Kwak

    (Electrochemistry Laboratory, Korea Advanced Institute of Science and Technology)

  • Zheng Liu

    (CREST, Japan Science and Technology Corporation, Tohoku University)

  • Osamu Terasaki

    (CREST, Japan Science and Technology Corporation, Tohoku University
    Tohoku University)

  • Ryong Ryoo

    (Korea Advanced Institute of Science and Technology)

Abstract

Nanostructured carbon materials are potentially of great technological interest for the development of electronic1,2, catalytic3,4 and hydrogen-storage systems5,6. Here we describe a general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters (typically 6 nanometres inside and 9 nanometres outside). These structures are formed by using ordered mesoporous silicas as templates, the removal of which leaves a partially ordered graphitic framework. The resulting material supports a high dispersion of platinum nanoparticles, exceeding that of other common microporous carbon materials (such as carbon black, charcoal and activated carbon fibres). The platinum cluster diameter can be controlled to below 3 nanometres, and the high dispersion of these metal clusters gives rise to promising electrocatalytic activity for oxygen reduction, which could prove to be practically relevant for fuel-cell technologies. These nanomaterials can also be prepared in the form of free-standing films by using ordered silica films as the templates.

Suggested Citation

  • Sang Hoon Joo & Seong Jae Choi & Ilwhan Oh & Juhyoun Kwak & Zheng Liu & Osamu Terasaki & Ryong Ryoo, 2001. "Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles," Nature, Nature, vol. 412(6843), pages 169-172, July.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6843:d:10.1038_35084046
    DOI: 10.1038/35084046
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35084046
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35084046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.
    2. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    3. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
    4. Huimin Zhang & Jingyi Qiu & Jie Pang & Gaoping Cao & Bingsen Zhang & Li Wang & Xiangming He & Xuning Feng & Shizhou Ma & Xinggao Zhang & Hai Ming & Zhuangnan Li & Feng Li & Hao Zhang, 2024. "Sub-millisecond lithiothermal synthesis of graphitic meso–microporous carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Dong Jin Ham & Jae Sung Lee, 2009. "Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-27, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6843:d:10.1038_35084046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.