IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53903-0.html
   My bibliography  Save this article

Distribution and diversity of classical deacylases in bacteria

Author

Listed:
  • Leonie G. Graf

    (University of Greifswald)

  • Carlos Moreno-Yruela

    (University of Copenhagen
    EPFL)

  • Chuan Qin

    (University of Greifswald)

  • Sabrina Schulze

    (University of Greifswald)

  • Gottfried J. Palm

    (University of Greifswald)

  • Ole Schmöker

    (University of Greifswald)

  • Nancy Wang

    (The University of Melbourne)

  • Dianna M. Hocking

    (The University of Melbourne)

  • Leila Jebeli

    (The University of Melbourne)

  • Britta Girbardt

    (University of Greifswald)

  • Leona Berndt

    (University of Greifswald)

  • Babett Dörre

    (University of Greifswald)

  • Daniel M. Weis

    (University of Greifswald)

  • Markus Janetzky

    (University of Greifswald)

  • Dirk Albrecht

    (University of Greifswald)

  • Daniela Zühlke

    (University of Greifswald)

  • Susanne Sievers

    (University of Greifswald)

  • Richard A. Strugnell

    (The University of Melbourne)

  • Christian A. Olsen

    (University of Copenhagen)

  • Kay Hofmann

    (University of Cologne)

  • Michael Lammers

    (University of Greifswald)

Abstract

Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-d-/l-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.

Suggested Citation

  • Leonie G. Graf & Carlos Moreno-Yruela & Chuan Qin & Sabrina Schulze & Gottfried J. Palm & Ole Schmöker & Nancy Wang & Dianna M. Hocking & Leila Jebeli & Britta Girbardt & Leona Berndt & Babett Dörre &, 2024. "Distribution and diversity of classical deacylases in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-31, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53903-0
    DOI: 10.1038/s41467-024-53903-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53903-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53903-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Kremer & Sabrina Schulze & Nadja Eisenbruch & Felix Nagel & Robert Vogt & Leona Berndt & Babett Dörre & Gottfried J. Palm & Jens Hoppen & Britta Girbardt & Dirk Albrecht & Susanne Sievers & , 2024. "Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Fabian Paul & Thomas R Weikl, 2016. "How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    4. Chuan Qin & Leonie G. Graf & Kilian Striska & Markus Janetzky & Norman Geist & Robin Specht & Sabrina Schulze & Gottfried J. Palm & Britta Girbardt & Babett Dörre & Leona Berndt & Stefan Kemnitz & Mar, 2024. "Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Di Zhang & Zhanyun Tang & He Huang & Guolin Zhou & Chang Cui & Yejing Weng & Wenchao Liu & Sunjoo Kim & Sangkyu Lee & Mathew Perez-Neut & Jun Ding & Daniel Czyz & Rong Hu & Zhen Ye & Maomao He & Y. Ge, 2019. "Metabolic regulation of gene expression by histone lactylation," Nature, Nature, vol. 574(7779), pages 575-580, October.
    6. Peter J. Watson & Louise Fairall & Guilherme M. Santos & John W. R. Schwabe, 2012. "Structure of HDAC3 bound to co-repressor and inositol tetraphosphate," Nature, Nature, vol. 481(7381), pages 335-340, January.
    7. Michael S. Finnin & Jill R. Donigian & Alona Cohen & Victoria M. Richon & Richard A. Rifkind & Paul A. Marks & Ronald Breslow & Nikola P. Pavletich, 1999. "Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors," Nature, Nature, vol. 401(6749), pages 188-193, September.
    8. Hanyang Dong & Jianji Zhang & Hui Zhang & Yue Han & Congcong Lu & Chen Chen & Xiaoxia Tan & Siyu Wang & Xue Bai & Guijin Zhai & Shanshan Tian & Tao Zhang & Zhongyi Cheng & Enmin Li & Liyan Xu & Kai Zh, 2022. "YiaC and CobB regulate lysine lactylation in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    10. Peter J. Watson & Christopher J. Millard & Andrew M. Riley & Naomi S. Robertson & Lyndsey C. Wright & Himali Y. Godage & Shaun M. Cowley & Andrew G. Jamieson & Barry V. L. Potter & John W. R. Schwabe, 2016. "Insights into the activation mechanism of class I HDAC complexes by inositol phosphates," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    11. Julija Armalytė & Albinas Čepauskas & Gabija Šakalytė & Julius Martinkus & Jūratė Skerniškytė & Chloé Martens & Edita Sužiedėlienė & Abel Garcia-Pino & Dukas Jurėnas, 2023. "A polyamine acetyltransferase regulates the motility and biofilm formation of Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yang Hai & Stephen A. Shinsky & Nicholas J. Porter & David W. Christianson, 2017. "Histone deacetylase 10 structure and molecular function as a polyamine deacetylase," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    13. Daniel Schator & Sonia Mondino & Jérémy Berthelet & Cristina Silvestre & Mathilde Assaya & Christophe Rusniok & Fernando Rodrigues-Lima & Annemarie Wehenkel & Carmen Buchrieser & Monica Rolando, 2023. "Legionella para-effectors target chromatin and promote bacterial replication," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandy S. M. Wan & Reyhan Muhammad & Marios G. Koliopoulos & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Claudio Alfieri, 2023. "Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yusuke Nasu & Abhi Aggarwal & Giang N. T. Le & Camilla Trang Vo & Yuki Kambe & Xinxing Wang & Felix R. M. Beinlich & Ashley Bomin Lee & Tina R. Ram & Fangying Wang & Kelsea A. Gorzo & Yuki Kamijo & Ma, 2023. "Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Chuan Qin & Leonie G. Graf & Kilian Striska & Markus Janetzky & Norman Geist & Robin Specht & Sabrina Schulze & Gottfried J. Palm & Britta Girbardt & Babett Dörre & Leona Berndt & Stefan Kemnitz & Mar, 2024. "Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    8. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53903-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.