IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v607y2022i7920d10.1038_s41586-022-04952-2.html
   My bibliography  Save this article

Mechanisms and inhibition of Porcupine-mediated Wnt acylation

Author

Listed:
  • Yang Liu

    (University of Texas Southwestern Medical Center)

  • Xiaofeng Qi

    (University of Texas Southwestern Medical Center)

  • Linda Donnelly

    (University of Texas Southwestern Medical Center)

  • Nadia Elghobashi-Meinhardt

    (Technical University Berlin)

  • Tao Long

    (University of Texas Southwestern Medical Center)

  • Rich W. Zhou

    (University of Texas Southwestern Medical Center)

  • Yingyuan Sun

    (University of Texas Southwestern Medical Center)

  • Boyuan Wang

    (University of Texas Southwestern Medical Center)

  • Xiaochun Li

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

Abstract

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1–3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5–7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.

Suggested Citation

  • Yang Liu & Xiaofeng Qi & Linda Donnelly & Nadia Elghobashi-Meinhardt & Tao Long & Rich W. Zhou & Yingyuan Sun & Boyuan Wang & Xiaochun Li, 2022. "Mechanisms and inhibition of Porcupine-mediated Wnt acylation," Nature, Nature, vol. 607(7920), pages 816-822, July.
  • Handle: RePEc:nat:nature:v:607:y:2022:i:7920:d:10.1038_s41586-022-04952-2
    DOI: 10.1038/s41586-022-04952-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04952-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04952-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingfeng Zhang & Zheng Liu, 2024. "Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Kun Wang & Chia-Wei Lee & Xuewu Sui & Siyoung Kim & Shuhui Wang & Aidan B. Higgs & Aaron J. Baublis & Gregory A. Voth & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2023. "The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Yanjie Tan & Zhenzhou Huang & Yi Jin & Jiaying Wang & Hongjun Fan & Yangyang Liu & Liang Zhang & Yue Wu & Peiwei Liu & Tianliang Li & Jie Ran & He Tian & Sin Man Lam & Min Liu & Jun Zhou & Yunfan Yang, 2024. "Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Xuewu Sui & Kun Wang & Kangkang Song & Chen Xu & Jiunn Song & Chia-Wei Lee & Maofu Liao & Robert V. Farese & Tobias C. Walther, 2023. "Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Philip Schmiege & Linda Donnelly & Nadia Elghobashi-Meinhardt & Chia-Hsueh Lee & Xiaochun Li, 2024. "Structure and inhibition of the human lysosomal transporter Sialin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:607:y:2022:i:7920:d:10.1038_s41586-022-04952-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.