IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47309-1.html
   My bibliography  Save this article

Differentiation granules, a dynamic regulator of T. brucei development

Author

Listed:
  • Mathieu Cayla

    (University of Edinburgh
    University of York)

  • Christos Spanos

    (University of Edinburgh)

  • Kirsty McWilliam

    (University of Edinburgh)

  • Eliza Waskett

    (University of Edinburgh)

  • Juri Rappsilber

    (University of Edinburgh)

  • Keith R. Matthews

    (University of Edinburgh)

Abstract

Adaptation to a change of environment is an essential process for survival, in particular for parasitic organisms exposed to a wide range of hosts. Such adaptations include rapid control of gene expression through the formation of membraneless organelles composed of poly-A RNA and proteins. The African trypanosome Trypanosoma brucei is exquisitely sensitive to well-defined environmental stimuli that trigger cellular adaptations through differentiation events that characterise its complex life cycle. The parasite has been shown to form stress granules in vitro, and it has been proposed that such a stress response could have been repurposed to enable differentiation and facilitate parasite transmission. Therefore, we explored the composition and positional dynamics of membraneless granules formed in response to starvation stress and during differentiation in the mammalian host between the replicative slender and transmission-adapted stumpy forms. We find that T. brucei differentiation does not reflect the default response to environmental stress. Instead, the developmental response of the parasites involves a specific and programmed hierarchy of membraneless granule assembly, with distinct components and regulation by protein kinases such as TbDYRK, that are required for the parasite to successfully progress through its life cycle development and prepare for transmission.

Suggested Citation

  • Mathieu Cayla & Christos Spanos & Kirsty McWilliam & Eliza Waskett & Juri Rappsilber & Keith R. Matthews, 2024. "Differentiation granules, a dynamic regulator of T. brucei development," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47309-1
    DOI: 10.1038/s41467-024-47309-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47309-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47309-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Binny M. Mony & Paula MacGregor & Alasdair Ivens & Federico Rojas & Andrew Cowton & Julie Young & David Horn & Keith Matthews, 2014. "Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei," Nature, Nature, vol. 505(7485), pages 681-685, January.
    2. Samuel Dean & Rosa Marchetti & Kiaran Kirk & Keith R. Matthews, 2009. "A surface transporter family conveys the trypanosome differentiation signal," Nature, Nature, vol. 459(7244), pages 213-217, May.
    3. Arpan Kumar Rai & Jia-Xuan Chen & Matthias Selbach & Lucas Pelkmans, 2018. "Kinase-controlled phase transition of membraneless organelles in mitosis," Nature, Nature, vol. 559(7713), pages 211-216, July.
    4. Emma M. Briggs & Federico Rojas & Richard McCulloch & Keith R. Matthews & Thomas D. Otto, 2021. "Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Nicola M. Moloney & Konstantin Barylyuk & Eelco Tromer & Oliver M. Crook & Lisa M. Breckels & Kathryn S. Lilley & Ross F. Waller & Paula MacGregor, 2023. "Mapping diversity in African trypanosomes using high resolution spatial proteomics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mabel Deladem Tettey & Federico Rojas & Keith R. Matthews, 2022. "Extracellular release of two peptidases dominates generation of the trypanosome quorum-sensing signal," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Juan F. Quintana & Praveena Chandrasegaran & Matthew C. Sinton & Emma M. Briggs & Thomas D. Otto & Rhiannon Heslop & Calum Bentley-Abbot & Colin Loney & Luis de Lecea & Neil A. Mabbott & Annette MacLe, 2022. "Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Lennart Enders & Marton Siklos & Jan Borggräfe & Stefan Gaussmann & Anna Koren & Monika Malik & Tatjana Tomek & Michael Schuster & Jiří Reiniš & Elisa Hahn & Andrea Rukavina & Andreas Reicher & Tamara, 2023. "Pharmacological perturbation of the phase-separating protein SMNDC1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Juan Manuel Valverde & Geronimo Dubra & Michael Phillips & Austin Haider & Carlos Elena-Real & Aurélie Fournet & Emile Alghoul & Dhanvantri Chahar & Nuria Andrés-Sanchez & Matteo Paloni & Pau Bernadó , 2023. "A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    8. Christian Reuter & Laura Hauf & Fabian Imdahl & Rituparno Sen & Ehsan Vafadarnejad & Philipp Fey & Tamara Finger & Nicola G. Jones & Heike Walles & Lars Barquist & Antoine-Emmanuel Saliba & Florian Gr, 2023. "Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Joana R. C. Faria & Michele Tinti & Catarina A. Marques & Martin Zoltner & Harunori Yoshikawa & Mark C. Field & David Horn, 2023. "An allele-selective inter-chromosomal protein bridge supports monogenic antigen expression in the African trypanosome," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Hien Thi Thu Pham & Stefan Magez & Boyoon Choi & Bolortsetseg Baatar & Joohee Jung & Magdalena Radwanska, 2023. "Neutrophil metalloproteinase driven spleen damage hampers infection control of trypanosomiasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Eva Horáková & Laurence Lecordier & Paula Cunha & Roman Sobotka & Piya Changmai & Catharina J. M. Langedijk & Jan Van Den Abbeele & Benoit Vanhollebeke & Julius Lukeš, 2022. "Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Santiago Martínez-Lumbreras & Lena K. Träger & Miriam M. Mulorz & Marco Payr & Varvara Dikaya & Clara Hipp & Julian König & Michael Sattler, 2024. "Intramolecular autoinhibition regulates the selectivity of PRPF40A tandem WW domains for proline-rich motifs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47309-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.