IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v459y2009i7244d10.1038_nature07997.html
   My bibliography  Save this article

A surface transporter family conveys the trypanosome differentiation signal

Author

Listed:
  • Samuel Dean

    (Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK)

  • Rosa Marchetti

    (School of Biochemistry & Molecular Biology, Australian National University, Canberra, ACT 0200, Australia)

  • Kiaran Kirk

    (School of Biochemistry & Molecular Biology, Australian National University, Canberra, ACT 0200, Australia)

  • Keith R. Matthews

    (Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK)

Abstract

Microbial pathogens use environmental cues to trigger the developmental events needed to infect mammalian hosts or transmit to disease vectors. The parasites causing African sleeping sickness respond to citrate or cis-aconitate (CCA) to initiate life-cycle development when transmitted to their tsetse fly vector. This requires hypersensitization of the parasites to CCA by exposure to low temperature, conditions encountered after tsetse fly feeding at dusk or dawn. Here we identify a carboxylate-transporter family, PAD (proteins associated with differentiation), required for perception of this differentiation signal. Consistent with predictions for the response of trypanosomes to CCA, PAD proteins are expressed on the surface of the transmission-competent ‘stumpy-form’ parasites in the bloodstream, and at least one member is thermoregulated, showing elevated expression and surface access at low temperature. Moreover, RNA-interference-mediated ablation of PAD expression diminishes CCA-induced differentiation and eliminates CCA hypersensitivity under cold-shock conditions. As well as being molecular transducers of the differentiation signal in these parasites, PAD proteins provide the first example of a surface marker able to discriminate the transmission stage of trypanosomes in their mammalian host.

Suggested Citation

  • Samuel Dean & Rosa Marchetti & Kiaran Kirk & Keith R. Matthews, 2009. "A surface transporter family conveys the trypanosome differentiation signal," Nature, Nature, vol. 459(7244), pages 213-217, May.
  • Handle: RePEc:nat:nature:v:459:y:2009:i:7244:d:10.1038_nature07997
    DOI: 10.1038/nature07997
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07997
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathieu Cayla & Christos Spanos & Kirsty McWilliam & Eliza Waskett & Juri Rappsilber & Keith R. Matthews, 2024. "Differentiation granules, a dynamic regulator of T. brucei development," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Juan F. Quintana & Praveena Chandrasegaran & Matthew C. Sinton & Emma M. Briggs & Thomas D. Otto & Rhiannon Heslop & Calum Bentley-Abbot & Colin Loney & Luis de Lecea & Neil A. Mabbott & Annette MacLe, 2022. "Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Mabel Deladem Tettey & Federico Rojas & Keith R. Matthews, 2022. "Extracellular release of two peptidases dominates generation of the trypanosome quorum-sensing signal," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Christian Reuter & Laura Hauf & Fabian Imdahl & Rituparno Sen & Ehsan Vafadarnejad & Philipp Fey & Tamara Finger & Nicola G. Jones & Heike Walles & Lars Barquist & Antoine-Emmanuel Saliba & Florian Gr, 2023. "Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:459:y:2009:i:7244:d:10.1038_nature07997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.