IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47159-x.html
   My bibliography  Save this article

Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification

Author

Listed:
  • Mengjie Qiao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ruibo Sun

    (Anhui Agricultural University)

  • Zixuan Wang

    (Chinese Academy of Sciences
    Jiangxi Agricultural University)

  • Kenneth Dumack

    (University of Cologne)

  • Xingguang Xie

    (Chinese Academy of Sciences)

  • Chuanchao Dai

    (Nanjing Normal University)

  • Ertao Wang

    (Chinese Academy of Sciences)

  • Jizhong Zhou

    (University of Oklahoma)

  • Bo Sun

    (Chinese Academy of Sciences)

  • Xinhua Peng

    (Chinese Academy of Sciences)

  • Michael Bonkowski

    (University of Cologne
    University of Cologne)

  • Yan Chen

    (Chinese Academy of Sciences)

Abstract

Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.

Suggested Citation

  • Mengjie Qiao & Ruibo Sun & Zixuan Wang & Kenneth Dumack & Xingguang Xie & Chuanchao Dai & Ertao Wang & Jizhong Zhou & Bo Sun & Xinhua Peng & Michael Bonkowski & Yan Chen, 2024. "Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47159-x
    DOI: 10.1038/s41467-024-47159-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47159-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47159-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chui-Hua Kong & Song-Zhu Zhang & Yong-Hua Li & Zhi-Chao Xia & Xue-Fang Yang & Scott J. Meiners & Peng Wang, 2018. "Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Gabriella Endre & Attila Kereszt & Zoltán Kevei & Sorina Mihacea & Péter Kaló & György B. Kiss, 2002. "A receptor kinase gene regulating symbiotic nodule development," Nature, Nature, vol. 417(6892), pages 962-966, June.
    4. Camille Fonouni-Farde & Sovanna Tan & Maël Baudin & Mathias Brault & Jiangqi Wen & Kirankumar S. Mysore & Andreas Niebel & Florian Frugier & Anouck Diet, 2016. "DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    5. Antony Unwin, 2013. "Discovering Statistics Using R by Andy Field, Jeremy Miles, Zoë Field," International Statistical Review, International Statistical Institute, vol. 81(1), pages 169-170, April.
    6. Xiao-Fei Li & Zhi-Gang Wang & Xing-Guo Bao & Jian-Hao Sun & Si-Cun Yang & Ping Wang & Cheng-Bao Wang & Jin-Pu Wu & Xin-Ru Liu & Xiu-Li Tian & Yu Wang & Jian-Peng Li & Yan Wang & Hai-Yong Xia & Pei-Pei, 2021. "Long-term increased grain yield and soil fertility from intercropping," Nature Sustainability, Nature, vol. 4(11), pages 943-950, November.
    7. Feng Feng & Jongho Sun & Guru V. Radhakrishnan & Tak Lee & Zoltán Bozsóki & Sébastien Fort & Aleksander Gavrin & Kira Gysel & Mikkel B. Thygesen & Kasper Røjkjær Andersen & Simona Radutoiu & Jens Stou, 2019. "A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).
    2. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    3. Manuel Frank & Lavinia Ioana Fechete & Francesca Tedeschi & Marcin Nadzieja & Malita Malou Malekzadeh Nørgaard & Jesus Montiel & Kasper Røjkjær Andersen & Mikkel H. Schierup & Dugald Reid & Stig Ugger, 2023. "Single-cell analysis identifies genes facilitating rhizobium infection in Lotus japonicus," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Qiang Zhang & Shuangshuang Wang & Qiujin Xie & Yuanjun Xia & Lei Lu & Mingxing Wang & Gang Wang & Siyu Long & Yunfei Cai & Ling Xu & Ertao Wang & Yina Jiang, 2023. "Control of arbuscule development by a transcriptional negative feedback loop in Medicago," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Keyi Ye & Fengjiao Bu & Liyuan Zhong & Zhaonian Dong & Zhaoxu Ma & Zhanpeng Tang & Yu Zhang & Xueyong Yang & Xun Xu & Ertao Wang & William J. Lucas & Sanwen Huang & Huan Liu & Jianshu Zheng, 2024. "Mapping the molecular landscape of Lotus japonicus nodule organogenesis through spatiotemporal transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Guo, Shibo & Zhao, Jin & Zhao, Chuang & Guo, Erjing & Liu, Zhijuan & Harrison, Matthew Tom & Liu, Ke & Zhang, Tianyi & Yang, Xiaoguang, 2024. "Adapting crop land-use in line with a changing climate improves productivity, prosperity and reduces greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 217(C).
    7. Fernando Aramburu-Merlos & Fatima A. M. Tenorio & Nester Mashingaidze & Alex Sananka & Stephen Aston & Jonathan J. Ojeda & Patricio Grassini, 2024. "Adopting yield-improving practices to meet maize demand in Sub-Saharan Africa without cropland expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Peltonen-Sainio, Pirjo & Niemi, Mari & Jauhiainen, Lauri, 2024. "Legacy effects of crop sequencing on biomass and their variability on farmers' fields in Finland are shaped by weather, farm conditions and rationales for land use," Agricultural Systems, Elsevier, vol. 215(C).
    9. Xin-Ran Li & Jongho Sun & Doris Albinsky & Darius Zarrabian & Raphaella Hull & Tak Lee & Edwin Jarratt-Barnham & Chai Hao Chiu & Amy Jacobsen & Eleni Soumpourou & Alessio Albanese & Wouter Kohlen & Le, 2022. "Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Penelope L. Lindsay & Sergey Ivanov & Nathan Pumplin & Xinchun Zhang & Maria J. Harrison, 2022. "Distinct ankyrin repeat subdomains control VAPYRIN locations and intracellular accommodation functions during arbuscular mycorrhizal symbiosis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Mohamed Hemida Abd-Alla & Salem M. Al-Amri & Abdel-Wahab Elsadek El-Enany, 2023. "Enhancing Rhizobium –Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change," Agriculture, MDPI, vol. 13(11), pages 1-26, November.
    12. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47159-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.