IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35026-6.html
   My bibliography  Save this article

Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments

Author

Listed:
  • Xia Yao

    (Princeton University)

  • Yan Wang

    (St. John’s University)

  • Zhifei Wang

    (St. John’s University)

  • Xiao Fan

    (Princeton University)

  • Di Wu

    (University of Oxford
    University of Oxford)

  • Jian Huang

    (Princeton University)

  • Alexander Mueller

    (Princeton University)

  • Sarah Gao

    (Princeton University)

  • Miaohui Hu

    (Princeton University)

  • Carol V. Robinson

    (University of Oxford
    University of Oxford)

  • Yong Yu

    (St. John’s University)

  • Shuai Gao

    (Princeton University
    Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University)

  • Nieng Yan

    (Princeton University)

Abstract

The R-type voltage-gated Ca2+ (Cav) channels Cav2.3, widely expressed in neuronal and neuroendocrine cells, represent potential drug targets for pain, seizures, epilepsy, and Parkinson’s disease. Despite their physiological importance, there have lacked selective small-molecule inhibitors targeting these channels. High-resolution structures may aid rational drug design. Here, we report the cryo-EM structure of human Cav2.3 in complex with α2δ−1 and β3 subunits at an overall resolution of 3.1 Å. The structure is nearly identical to that of Cav2.2, with VSDII in the down state and the other three VSDs up. A phosphatidylinositol 4,5-bisphosphate (PIP2) molecule binds to the interface of VSDII and the tightly closed pore domain. We also determined the cryo-EM structure of a Cav2.3 mutant in which a Cav2-unique cytosolic helix in repeat II (designated the CH2II helix) is deleted. This mutant, named ΔCH2, still reserves a down VSDII, but PIP2 is invisible and the juxtamembrane region on the cytosolic side is barely discernible. Our structural and electrophysiological characterizations of the wild type and ΔCH2 Cav2.3 show that the CH2II helix stabilizes the inactivated conformation of the channel by tightening the cytosolic juxtamembrane segments, while CH2II helix is not necessary for locking the down state of VSDII.

Suggested Citation

  • Xia Yao & Yan Wang & Zhifei Wang & Xiao Fan & Di Wu & Jian Huang & Alexander Mueller & Sarah Gao & Miaohui Hu & Carol V. Robinson & Yong Yu & Shuai Gao & Nieng Yan, 2022. "Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35026-6
    DOI: 10.1038/s41467-022-35026-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35026-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35026-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuai Gao & Xia Yao & Nieng Yan, 2021. "Structure of human Cav2.2 channel blocked by the painkiller ziconotide," Nature, Nature, vol. 596(7870), pages 143-147, August.
    2. Julia Benkert & Simon Hess & Shoumik Roy & Dayne Beccano-Kelly & Nicole Wiederspohn & Johanna Duda & Carsten Simons & Komal Patil & Aisylu Gaifullina & Nadja Mannal & Elena Dragicevic & Desirée Spaich, 2019. "Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Yanyu Zhao & Gaoxingyu Huang & Qiurong Wu & Kun Wu & Ruiqi Li & Jianlin Lei & Xiaojing Pan & Nieng Yan, 2019. "Cryo-EM structures of apo and antagonist-bound human Cav3.1," Nature, Nature, vol. 576(7787), pages 492-497, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiwei Gao & Shuai Xu & Xiaoli Cui & Hao Xu & Yunlong Qiu & Yiqing Wei & Yanli Dong & Boling Zhu & Chao Peng & Shiqi Liu & Xuejun Cai Zhang & Jianyuan Sun & Zhuo Huang & Yan Zhao, 2023. "Molecular insights into the gating mechanisms of voltage-gated calcium channel CaV2.3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiwei Gao & Shuai Xu & Xiaoli Cui & Hao Xu & Yunlong Qiu & Yiqing Wei & Yanli Dong & Boling Zhu & Chao Peng & Shiqi Liu & Xuejun Cai Zhang & Jianyuan Sun & Zhuo Huang & Yan Zhao, 2023. "Molecular insights into the gating mechanisms of voltage-gated calcium channel CaV2.3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yiqing Wei & Zhuoya Yu & Lili Wang & Xiaojing Li & Na Li & Qinru Bai & Yuhang Wang & Renjie Li & Yufei Meng & Hao Xu & Xianping Wang & Yanli Dong & Zhuo Huang & Xuejun Cai Zhang & Yan Zhao, 2024. "Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Marisol Sampedro-Castañeda & Lucas L. Baltussen & André T. Lopes & Yichen Qiu & Liina Sirvio & Simeon R. Mihaylov & Suzanne Claxton & Jill C. Richardson & Gabriele Lignani & Sila K. Ultanir, 2023. "Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Lingli He & Zhuoya Yu & Ze Geng & Zhuo Huang & Changjiang Zhang & Yanli Dong & Yiwei Gao & Yuhang Wang & Qihao Chen & Le Sun & Xinyue Ma & Bo Huang & Xiaoqun Wang & Yan Zhao, 2022. "Structure, gating, and pharmacology of human CaV3.3 channel," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35026-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.