IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47078-x.html
   My bibliography  Save this article

Essential role of lattice oxygen in hydrogen sensing reaction

Author

Listed:
  • Jiayu Li

    (Jilin University)

  • Wenzhe Si

    (Tsinghua University)

  • Lei Shi

    (Jilin University)

  • Ruiqin Gao

    (NingboTech University)

  • Qiuju Li

    (Third Military Medical University (Army Medical University))

  • Wei An

    (Jilin University)

  • Zicheng Zhao

    (Jilin University)

  • Lu Zhang

    (Jilin University)

  • Ni Bai

    (Jiangsu University of Science and Technology)

  • Xiaoxin Zou

    (Jilin University)

  • Guo-Dong Li

    (Jilin University)

Abstract

Understanding the sensing mechanism of metal oxide semiconductors is imperative to the development of high-performance sensors. The traditional sensing mechanism only recognizes the effect of surface chemisorbed oxygen from the air but ignores surface lattice oxygen. Herein, using in-situ characterizations, we provide direct experimental evidence that the surface chemisorbed oxygen participated in the sensing process can come from lattice oxygen of the oxides. Further density functional theory (DFT) calculations prove that the p-band center of O serves as a state of art for regulating the participation of lattice oxygen in gas-sensing reactions. Based on our experimental data and theoretical calculations, we discuss mechanisms that are fundamentally different from the conventional mechanism and show that the easily participation of lattice oxygen is helpful for the high response value of the materials.

Suggested Citation

  • Jiayu Li & Wenzhe Si & Lei Shi & Ruiqin Gao & Qiuju Li & Wei An & Zicheng Zhao & Lu Zhang & Ni Bai & Xiaoxin Zou & Guo-Dong Li, 2024. "Essential role of lattice oxygen in hydrogen sensing reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47078-x
    DOI: 10.1038/s41467-024-47078-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47078-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47078-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. David A. Cullen & K. C. Neyerlin & Rajesh K. Ahluwalia & Rangachary Mukundan & Karren L. More & Rodney L. Borup & Adam Z. Weber & Deborah J. Myers & Ahmet Kusoglu, 2021. "New roads and challenges for fuel cells in heavy-duty transportation," Nature Energy, Nature, vol. 6(5), pages 462-474, May.
    3. Yong Kun Jo & Seong-Yong Jeong & Young Kook Moon & Young-Moo Jo & Ji-Wook Yoon & Jong-Heun Lee, 2021. "Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. J. Broek & S. Abegg & S. E. Pratsinis & A. T. Güntner, 2019. "Highly selective detection of methanol over ethanol by a handheld gas sensor," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomeng Yin & Hao Zhang & Xuezhi Qiao & Xinyuan Zhou & Zhenjie Xue & Xiangyu Chen & Haochen Ye & Cancan Li & Zhe Tang & Kailin Zhang & Tie Wang, 2024. "Artificial olfactory memory system based on conductive metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    4. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    5. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    6. Ke-Feng Li & Chen-Hui Yu & Guang-Ling Liang & Jie Chen & Yu Chang & Gang Xu & Guan-E Wang, 2025. "Organic-inorganic hybrid covalent superlattice for temperature-compensated ratiometric gas sensing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Maximilian Grandi & Kurt Mayer & Matija Gatalo & Gregor Kapun & Francisco Ruiz-Zepeda & Bernhard Marius & Miran Gaberšček & Viktor Hacker, 2021. "The Influence Catalyst Layer Thickness on Resistance Contributions of PEMFC Determined by Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(21), pages 1-18, November.
    8. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    9. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    10. Chen, Jinxing & Bao, Zhiming & Xu, Yunfei & Fan, Linhao & Du, Qing & Qu, Guanshu & Li, Feiqiang & Jiao, Kui, 2024. "Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: Effects of sub-distribution zone," Applied Energy, Elsevier, vol. 358(C).
    11. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Li, Su & Zhang, Zhizhong & Du, Heng & Zheng, Guoqiang & Zhang, Xiaolong & Li, Zerong, 2024. "Design and verification of a novel energy-efficient pump-valve primary-auxiliary electro-hydraulic steering system for multi-axle heavy vehicles," Energy, Elsevier, vol. 312(C).
    14. Jason K. Lee & Grace Anderson & Andrew W. Tricker & Finn Babbe & Arya Madan & David A. Cullen & José’ D. Arregui-Mena & Nemanja Danilovic & Rangachary Mukundan & Adam Z. Weber & Xiong Peng, 2023. "Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Lu, Yirui & Yang, Daijun & Wu, Haoyu & Jia, Linhan & Chen, Jie & Ming, Pingwen & Pan, Xiangmin, 2024. "Degradation mechanism analysis of a fuel cell stack based on perfluoro sulfonic acid membrane in near-water boiling temperature environment," Renewable Energy, Elsevier, vol. 234(C).
    16. Xia, Zhifeng & Chen, Huicui & Li, Weihong & Zhang, Ruirui & Xu, Yiming & Zhang, Tong & Pei, Pucheng, 2024. "Characterization and analysis of current distribution for oxygen starvation diagnosis: A research based on segmented PEMFC technology," Renewable Energy, Elsevier, vol. 237(PC).
    17. Qitao Hu & Paul Solomon & Lars Österlund & Zhen Zhang, 2024. "Nanotransistor-based gas sensing with record-high sensitivity enabled by electron trapping effect in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    19. Meng, L.Y. & Wang, G.F. & See, K.W. & Wang, Y.P. & Zhang, Y. & Zang, C.Y. & Li, S. & Xie, B., 2023. "Explosion characteristic of CH4–H2-Air mixtures vented by encapsulated large-scale Li-ion battery under thermal runaway," Energy, Elsevier, vol. 278(PA).
    20. Suárez, Christian & Toharias, Baltasar & Salva Aguirre, María & Chesalkin, Artem & Rosa, Felipe & Iranzo, Alfredo, 2023. "Experimental dynamic load cycling and current density measurements of different inlet/outlet configurations of a parallel-serpentine PEMFC," Energy, Elsevier, vol. 283(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47078-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.