A large-scale view of marine heatwaves revealed by archetype analysis
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-35493-x
Download full text from publisher
References listed on IDEAS
- Hakase Hayashida & Richard J. Matear & Peter G. Strutton & Xuebin Zhang, 2020. "Insights into projected changes in marine heatwaves from a high-resolution ocean circulation model," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Neil J. Holbrook & Hillary A. Scannell & Alexander Gupta & Jessica A. Benthuysen & Ming Feng & Eric C. J. Oliver & Lisa V. Alexander & Michael T. Burrows & Markus G. Donat & Alistair J. Hobday & Pippa, 2019. "A global assessment of marine heatwaves and their drivers," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandre Mignot & Karina Schuckmann & Peter Landschützer & Florent Gasparin & Simon Gennip & Coralie Perruche & Julien Lamouroux & Tristan Amm, 2022. "Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Jian Shi & Hao Huang & Alexey V. Fedorov & Neil J. Holbrook & Yu Zhang & Ruiqiang Ding & Yongyue Luo & Shengpeng Wang & Jiajie Chen & Xi Hu & Qinyu Liu & Fei Huang & Xiaopei Lin, 2024. "Northeast Pacific warm blobs sustained via extratropical atmospheric teleconnections," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Patricia M. Clay & Jennifer Howard & D. Shallin Busch & Lisa L. Colburn & Amber Himes-Cornell & Steven S. Rumrill & Stephani G. Zador & Roger B. Griffis, 2020. "Ocean and coastal indicators: understanding and coping with climate change at the land-sea interface," Climatic Change, Springer, vol. 163(4), pages 1773-1793, December.
- Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Ce Bian & Zhao Jing & Hong Wang & Lixin Wu & Zhaohui Chen & Bolan Gan & Haiyuan Yang, 2023. "Oceanic mesoscale eddies as crucial drivers of global marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Ying Zhang & Yan Du & Ming Feng & Alistair J. Hobday, 2023. "Vertical structures of marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Dillon J. Amaya & Michael G. Jacox & Michael A. Alexander & James D. Scott & Clara Deser & Antonietta Capotondi & Adam S. Phillips, 2023. "Bottom marine heatwaves along the continental shelves of North America," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Changyu Li & Jianping Huang & Xiaoyue Liu & Lei Ding & Yongli He & Yongkun Xie, 2024. "The ocean losing its breath under the heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Kathryn E. Smith & Margot Aubin & Michael T. Burrows & Karen Filbee-Dexter & Alistair J. Hobday & Neil J. Holbrook & Nathan G. King & Pippa J. Moore & Alex Sen Gupta & Mads Thomsen & Thomas Wernberg &, 2024. "Global impacts of marine heatwaves on coastal foundation species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Shengpeng Wang & Zhao Jing & Lixin Wu & Shantong Sun & Qihua Peng & Hong Wang & Yu Zhang & Jian Shi, 2023. "Southern hemisphere eastern boundary upwelling systems emerging as future marine heatwave hotspots under greenhouse warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Heather Welch & Matthew S. Savoca & Stephanie Brodie & Michael G. Jacox & Barbara A. Muhling & Thomas A. Clay & Megan A. Cimino & Scott R. Benson & Barbara A. Block & Melinda G. Conners & Daniel P. Co, 2023. "Impacts of marine heatwaves on top predator distributions are variable but predictable," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35493-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.