IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46702-0.html
   My bibliography  Save this article

Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation

Author

Listed:
  • Mark R. Kreider

    (University of Montana)

  • Philip E. Higuera

    (University of Montana)

  • Sean A. Parks

    (USDA Forest Service)

  • William L. Rice

    (University of Montana)

  • Nadia White

    (University of Montana)

  • Andrew J. Larson

    (University of Montana
    University of Montana)

Abstract

Fire suppression is the primary management response to wildfires in many areas globally. By removing less-extreme wildfires, this approach ensures that remaining wildfires burn under more extreme conditions. Here, we term this the “suppression bias” and use a simulation model to highlight how this bias fundamentally impacts wildfire activity, independent of fuel accumulation and climate change. We illustrate how attempting to suppress all wildfires necessarily means that fires will burn with more severe and less diverse ecological impacts, with burned area increasing at faster rates than expected from fuel accumulation or climate change. Over a human lifespan, the modeled impacts of the suppression bias exceed those from fuel accumulation or climate change alone, suggesting that suppression may exert a significant and underappreciated influence on patterns of fire globally. Managing wildfires to safely burn under low and moderate conditions is thus a critical tool to address the growing wildfire crisis.

Suggested Citation

  • Mark R. Kreider & Philip E. Higuera & Sean A. Parks & William L. Rice & Nadia White & Andrew J. Larson, 2024. "Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46702-0
    DOI: 10.1038/s41467-024-46702-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46702-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46702-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Max A. Moritz & Enric Batllori & Ross A. Bradstock & A. Malcolm Gill & John Handmer & Paul F. Hessburg & Justin Leonard & Sarah McCaffrey & Dennis C. Odion & Tania Schoennagel & Alexandra D. Syphard, 2014. "Learning to coexist with wildfire," Nature, Nature, vol. 515(7525), pages 58-66, November.
    2. Toddi Steelman & Sarah McCaffrey, 2013. "Best practices in risk and crisis communication: Implications for natural hazards management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 683-705, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Travis Paveglio & Catrin Edgeley, 2017. "Community diversity and hazard events: understanding the evolution of local approaches to wildfire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1083-1108, June.
    2. Thomas Buchholz & John Gunn & Bruce Springsteen & Gregg Marland & Max Moritz & David Saah, 2022. "Probability-based accounting for carbon in forests to consider wildfire and other stochastic events: synchronizing science, policy, and carbon offsets," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-21, January.
    3. Scheller, Robert & Kretchun, Alec & Hawbaker, Todd J. & Henne, Paul D., 2019. "A landscape model of variable social-ecological fire regimes," Ecological Modelling, Elsevier, vol. 401(C), pages 85-93.
    4. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    5. Górriz-Mifsud, Elena & Burns, Matthew & Marini Govigli, Valentino, 2019. "Civil society engaged in wildfires: Mediterranean forest fire volunteer groupings," Forest Policy and Economics, Elsevier, vol. 102(C), pages 119-129.
    6. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    7. Van Butsic & Maggi Kelly & Max A. Moritz, 2015. "Land Use and Wildfire: A Review of Local Interactions and Teleconnections," Land, MDPI, vol. 4(1), pages 1-17, February.
    8. Wang, Ning & Zhao, Shiyue & Wang, Sutong, 2024. "A novel clustering-based resampling with cost-sensitive boosting method to model and map wildfire susceptibility," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    10. Yanfeng Wang & Ping Huang, 2022. "Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. John McClure & David Johnston & Liv Henrich & Taciano Milfont & Julia Becker, 2015. "When a hazard occurs where it is not expected: risk judgments about different regions after the Christchurch earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 635-652, January.
    12. Alcasena, Fermín J. & Salis, Michele & Nauslar, Nicholas J. & Aguinaga, A. Eduardo & Vega-García, Cristina, 2016. "Quantifying economic losses from wildfires in black pine afforestations of northern Spain," Forest Policy and Economics, Elsevier, vol. 73(C), pages 153-167.
    13. Hazra, Devika & Gallagher, Patricia, 2022. "Role of insurance in wildfire risk mitigation," Economic Modelling, Elsevier, vol. 108(C).
    14. Emily Heaney & Laura Hunter & Angus Clulow & Devin Bowles & Sotiris Vardoulakis, 2021. "Efficacy of Communication Techniques and Health Outcomes of Bushfire Smoke Exposure: A Scoping Review," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    15. Galiana-Martín Luis, 2017. "Spatial Planning Experiences for Vulnerability Reduction in the Wildland-Urban Interface in Mediterranean European Countries," European Countryside, Sciendo, vol. 9(3), pages 577-593, September.
    16. Xu Chen & Surya T. Tokdar, 2021. "Joint quantile regression for spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 826-852, September.
    17. Tianzhuo Liu & Huifang Jiao, 2018. "How does information affect fire risk reduction behaviors? Mediating effects of cognitive processes and subjective knowledge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1461-1483, February.
    18. Amoako, Frimpong & Asuamah Yeboah, Samuel, 2023. ""Community Voices in Control: A Systematic Review of Local Representation's Influence on RCB Governance Structure’’," MPRA Paper 118629, University Library of Munich, Germany, revised 10 Sep 2023.
    19. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    20. William L. Baker, 2024. "Contemporary Wildfires Not More Severe Than Historically: More Fire of All Severities Needed to Sustain and Adapt Western US Dry Forests as Climate Changes," Sustainability, MDPI, vol. 16(8), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46702-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.