IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46651-8.html
   My bibliography  Save this article

Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets

Author

Listed:
  • Jie Xia

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Cirong Liu

    (Chinese Academy of Sciences)

  • Jiao Li

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Yao Meng

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Siqi Yang

    (Chengdu University of Information Technology)

  • Huafu Chen

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Wei Liao

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

Abstract

Deciphering the complex relationship between neuroanatomical connections and functional activity in primate brains remains a daunting task, especially regarding the influence of monosynaptic connectivity on cortical activity. Here, we investigate the anatomical-functional relationship and decompose the neuronal-tracing connectome of marmoset brains into a series of eigenmodes using graph signal processing. These cellular connectome eigenmodes effectively constrain the cortical activity derived from resting-state functional MRI, and uncover a patterned cellular-functional decoupling. This pattern reveals a spatial gradient from coupled dorsal-posterior to decoupled ventral-anterior cortices, and recapitulates micro-structural profiles and macro-scale hierarchical cortical organization. Notably, these marmoset-derived eigenmodes may facilitate the inference of spontaneous cortical activity and functional connectivity of homologous areas in humans, highlighting the potential generalizing of the connectomic constraints across species. Collectively, our findings illuminate how neuronal-tracing connectome eigenmodes constrain cortical activity and improve our understanding of the brain’s anatomical-functional relationship.

Suggested Citation

  • Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46651-8
    DOI: 10.1038/s41467-024-46651-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46651-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46651-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Piotr Majka & Shi Bai & Sophia Bakola & Sylwia Bednarek & Jonathan M. Chan & Natalia Jermakow & Lauretta Passarelli & David H. Reser & Panagiota Theodoni & Katrina H. Worthy & Xiao-Jing Wang & Daniel , 2020. "Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. John D. Medaglia & Weiyu Huang & Elisabeth A. Karuza & Apoorva Kelkar & Sharon L. Thompson-Schill & Alejandro Ribeiro & Danielle S. Bassett, 2018. "Functional alignment with anatomical networks is associated with cognitive flexibility," Nature Human Behaviour, Nature, vol. 2(2), pages 156-164, February.
    3. Xiaoguang Tian & Yuyan Chen & Piotr Majka & Diego Szczupak & Yonatan Sanz Perl & Cecil Chern-Chyi Yen & Chuanjun Tong & Furui Feng & Haiteng Jiang & Daniel Glen & Gustavo Deco & Marcello G. P. Rosa & , 2022. "An integrated resource for functional and structural connectivity of the marmoset brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Maria Giulia Preti & Dimitri Van De Ville, 2019. "Decoupling of brain function from structure reveals regional behavioral specialization in humans," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Selen Atasoy & Isaac Donnelly & Joel Pearson, 2016. "Human brain networks function in connectome-specific harmonic waves," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    6. Chuanjun Tong & Cirong Liu & Kaiwei Zhang & Binshi Bo & Ying Xia & Hao Yang & Yanqiu Feng & Zhifeng Liang, 2022. "Multimodal analysis demonstrating the shaping of functional gradients in the marmoset brain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    8. Seung Wook Oh & Julie A. Harris & Lydia Ng & Brent Winslow & Nicholas Cain & Stefan Mihalas & Quanxin Wang & Chris Lau & Leonard Kuan & Alex M. Henry & Marty T. Mortrud & Benjamin Ouellette & Thuc Ngh, 2014. "A mesoscale connectome of the mouse brain," Nature, Nature, vol. 508(7495), pages 207-214, April.
    9. James C. Pang & Kevin M. Aquino & Marianne Oldehinkel & Peter A. Robinson & Ben D. Fulcher & Michael Breakspear & Alex Fornito, 2023. "Geometric constraints on human brain function," Nature, Nature, vol. 618(7965), pages 566-574, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea I. Luppi & Helena M. Gellersen & Zhen-Qi Liu & Alexander R. D. Peattie & Anne E. Manktelow & Ram Adapa & Adrian M. Owen & Lorina Naci & David K. Menon & Stavros I. Dimitriadis & Emmanuel A. Sta, 2024. "Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Yaqian Yang & Zhiming Zheng & Longzhao Liu & Hongwei Zheng & Yi Zhen & Yi Zheng & Xin Wang & Shaoting Tang, 2023. "Enhanced brain structure-function tethering in transmodal cortex revealed by high-frequency eigenmodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Dominik P. Koller & Michael Schirner & Petra Ritter, 2024. "Human connectome topology directs cortical traveling waves and shapes frequency gradients," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    8. Evan Collins & Omar Chishti & Sami Obaid & Hari McGrath & Alex King & Xilin Shen & Jagriti Arora & Xenophon Papademetris & R. Todd Constable & Dennis D. Spencer & Hitten P. Zaveri, 2024. "Mapping the structure-function relationship along macroscale gradients in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Yao Fei & Qihang Wu & Shijie Zhao & Kun Song & Junwei Han & Cirong Liu, 2024. "Diverse and asymmetric patterns of single-neuron projectome in regulating interhemispheric connectivity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Xiaoguang Tian & Yuyan Chen & Piotr Majka & Diego Szczupak & Yonatan Sanz Perl & Cecil Chern-Chyi Yen & Chuanjun Tong & Furui Feng & Haiteng Jiang & Daniel Glen & Gustavo Deco & Marcello G. P. Rosa & , 2022. "An integrated resource for functional and structural connectivity of the marmoset brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Sudesna Chakraborty & Roy A. M. Haast & Kate M. Onuska & Prabesh Kanel & Marco A. M. Prado & Vania F. Prado & Ali R. Khan & Taylor W. Schmitz, 2024. "Multimodal gradients of basal forebrain connectivity across the neocortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Stuart Oldham & Gareth Ball, 2023. "A phylogenetically-conserved axis of thalamocortical connectivity in the human brain," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    16. Jessica Dafflon & Pedro F. Da Costa & František Váša & Ricardo Pio Monti & Danilo Bzdok & Peter J. Hellyer & Federico Turkheimer & Jonathan Smallwood & Emily Jones & Robert Leech, 2022. "A guided multiverse study of neuroimaging analyses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Daria E. A. Jensen & Klaus P. Ebmeier & Sana Suri & Matthew F. S. Rushworth & Miriam C. Klein-Flügge, 2024. "Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46651-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.