IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35197-2.html
   My bibliography  Save this article

An integrated resource for functional and structural connectivity of the marmoset brain

Author

Listed:
  • Xiaoguang Tian

    (University of Pittsburgh)

  • Yuyan Chen

    (Chinese Academy of Sciences)

  • Piotr Majka

    (Nencki Institute of Experimental Biology of the Polish Academy of Sciences
    Monash University)

  • Diego Szczupak

    (University of Pittsburgh)

  • Yonatan Sanz Perl

    (Universitat Pompeu Fabra
    Universidad de San Andrés)

  • Cecil Chern-Chyi Yen

    (National Institutes of Health (NINDS/NIH))

  • Chuanjun Tong

    (Chinese Academy of Sciences)

  • Furui Feng

    (Chinese Academy of Sciences)

  • Haiteng Jiang

    (Zhejiang University School of Medicine
    Zhejiang University)

  • Daniel Glen

    (National Institutes of Health (NIMH/NIH))

  • Gustavo Deco

    (Universitat Pompeu Fabra
    Institució Catalana de la Recerca i Estudis Avançats (ICREA)
    Max Planck Institute for Human Cognitive and Brain Sciences
    Monash University, Melbourne)

  • Marcello G. P. Rosa

    (Monash University)

  • Afonso C. Silva

    (University of Pittsburgh)

  • Zhifeng Liang

    (Chinese Academy of Sciences
    Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology Shanghai)

  • Cirong Liu

    (Chinese Academy of Sciences
    Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology Shanghai
    Lingang Laboratory
    University of Chinese Academy of Sciences)

Abstract

Comprehensive integration of structural and functional connectivity data is required to model brain functions accurately. While resources for studying the structural connectivity of non-human primate brains already exist, their integration with functional connectivity data has remained unavailable. Here we present a comprehensive resource that integrates the most extensive awake marmoset resting-state fMRI data available to date (39 marmoset monkeys, 710 runs, 12117 mins) with previously published cellular-level neuronal tracing data (52 marmoset monkeys, 143 injections) and multi-resolution diffusion MRI datasets. The combination of these data allowed us to (1) map the fine-detailed functional brain networks and cortical parcellations, (2) develop a deep-learning-based parcellation generator that preserves the topographical organization of functional connectivity and reflects individual variabilities, and (3) investigate the structural basis underlying functional connectivity by computational modeling. This resource will enable modeling structure-function relationships and facilitate future comparative and translational studies of primate brains.

Suggested Citation

  • Xiaoguang Tian & Yuyan Chen & Piotr Majka & Diego Szczupak & Yonatan Sanz Perl & Cecil Chern-Chyi Yen & Chuanjun Tong & Furui Feng & Haiteng Jiang & Daniel Glen & Gustavo Deco & Marcello G. P. Rosa & , 2022. "An integrated resource for functional and structural connectivity of the marmoset brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35197-2
    DOI: 10.1038/s41467-022-35197-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35197-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35197-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Randy L. Buckner & Daniel S. Margulies, 2019. "Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Piotr Majka & Shi Bai & Sophia Bakola & Sylwia Bednarek & Jonathan M. Chan & Natalia Jermakow & Lauretta Passarelli & David H. Reser & Panagiota Theodoni & Katrina H. Worthy & Xiao-Jing Wang & Daniel , 2020. "Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Adrián Ponce-Alvarez & Gustavo Deco & Patric Hagmann & Gian Luca Romani & Dante Mantini & Maurizio Corbetta, 2015. "Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    4. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yao Fei & Qihang Wu & Shijie Zhao & Kun Song & Junwei Han & Cirong Liu, 2024. "Diverse and asymmetric patterns of single-neuron projectome in regulating interhemispheric connectivity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanjun Tong & Cirong Liu & Kaiwei Zhang & Binshi Bo & Ying Xia & Hao Yang & Yanqiu Feng & Zhifeng Liang, 2022. "Multimodal analysis demonstrating the shaping of functional gradients in the marmoset brain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jie Xia & Cirong Liu & Jiao Li & Yao Meng & Siqi Yang & Huafu Chen & Wei Liao, 2024. "Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    5. Jessica Dafflon & Pedro F. Da Costa & František Váša & Ricardo Pio Monti & Danilo Bzdok & Peter J. Hellyer & Federico Turkheimer & Jonathan Smallwood & Emily Jones & Robert Leech, 2022. "A guided multiverse study of neuroimaging analyses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Daria E. A. Jensen & Klaus P. Ebmeier & Sana Suri & Matthew F. S. Rushworth & Miriam C. Klein-Flügge, 2024. "Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    8. Ann Hillier & Ryan P Kelly & Terrie Klinger, 2016. "Narrative Style Influences Citation Frequency in Climate Change Science," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    9. Ingmar E. J. Vries & Moritz F. Wurm, 2023. "Predictive neural representations of naturalistic dynamic input," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Sam V Norman-Haignere & Josh H McDermott, 2018. "Neural responses to natural and model-matched stimuli reveal distinct computations in primary and nonprimary auditory cortex," PLOS Biology, Public Library of Science, vol. 16(12), pages 1-46, December.
    13. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    14. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Eva-Maria Stauffer & Richard A. I. Bethlehem & Lena Dorfschmidt & Hyejung Won & Varun Warrier & Edward T. Bullmore, 2023. "The genetic relationships between brain structure and schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    18. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Maria Osetrova & Anna Tkachev & Waltraud Mair & Patricia Guijarro Larraz & Olga Efimova & Ilia Kurochkin & Elena Stekolshchikova & Nickolay Anikanov & Juat Chin Foo & Amaury Cazenave-Gassiot & Aleksan, 2024. "Lipidome atlas of the adult human brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Natalie Weed & Trygve Bakken & Nile Graddis & Nathan Gouwens & Daniel Millman & Michael Hawrylycz & Jack Waters, 2019. "Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35197-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.