IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46620-1.html
   My bibliography  Save this article

High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes

Author

Listed:
  • Jing Zhang

    (University of Surrey)

  • Xian-Gang Hu

    (Institute of Metal Research, Chinese Academy of Sciences
    Academy of Advanced Interdisciplinary Research, Xidian University)

  • Kangyu Ji

    (University of Cambridge)

  • Songru Zhao

    (Thomas Telford (AA) building, University of Surrey)

  • Dongtao Liu

    (University of Surrey)

  • Bowei Li

    (University of Surrey)

  • Peng-Xiang Hou

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Chang Liu

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Lirong Liu

    (Thomas Telford (AA) building, University of Surrey)

  • Samuel D. Stranks

    (University of Cambridge
    University of Cambridge)

  • Hui-Ming Cheng

    (University of Surrey
    Institute of Metal Research, Chinese Academy of Sciences
    Shenzhen University of Advanced Technology
    Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences)

  • S. Ravi P. Silva

    (University of Surrey
    School of Materials Science and Engineering, Zhengzhou University)

  • Wei Zhang

    (University of Surrey
    School of Materials Science and Engineering, Zhengzhou University)

Abstract

Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g−1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.

Suggested Citation

  • Jing Zhang & Xian-Gang Hu & Kangyu Ji & Songru Zhao & Dongtao Liu & Bowei Li & Peng-Xiang Hou & Chang Liu & Lirong Liu & Samuel D. Stranks & Hui-Ming Cheng & S. Ravi P. Silva & Wei Zhang, 2024. "High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46620-1
    DOI: 10.1038/s41467-024-46620-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46620-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46620-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Stolterfoht & Christian M. Wolff & José A. Márquez & Shanshan Zhang & Charles J. Hages & Daniel Rothhardt & Steve Albrecht & Paul L. Burn & Paul Meredith & Thomas Unold & Dieter Neher, 2018. "Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells," Nature Energy, Nature, vol. 3(10), pages 847-854, October.
    2. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    3. Hangyu Gu & Chengbin Fei & Guang Yang & Bo Chen & Md Aslam Uddin & Hengkai Zhang & Zhenyi Ni & Haoyang Jiao & Wenzhan Xu & Zijie Yan & Jinsong Huang, 2023. "Design optimization of bifacial perovskite minimodules for improved efficiency and stability," Nature Energy, Nature, vol. 8(7), pages 675-684, July.
    4. Guerrero-Lemus, R. & Vega, R. & Kim, Taehyeon & Kimm, Amy & Shephard, L.E., 2016. "Bifacial solar photovoltaics – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1533-1549.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    3. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    4. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    5. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    7. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    8. Katsaounis, Th. & Kotsovos, K. & Gereige, I. & Basaheeh, A. & Abdullah, M. & Khayat, A. & Al-Habshi, E. & Al-Saggaf, A. & Tzavaras, A.E., 2019. "Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1285-1298.
    9. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    10. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    11. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    12. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.
    13. Wang Lai Wang & Marek Kryszak, 2020. "Technological Progress and Supply Base under Uncertain Market Conditions: The Case Study of the Taiwanese c-Si Solar Industry 2016–2019," Energies, MDPI, vol. 13(21), pages 1-25, November.
    14. Wei Qin & Wajid Ali & Jianfeng Wang & Yong Liu & Xiaolan Yan & Pengfei Zhang & Zhaochi Feng & Hao Tian & Yanfeng Yin & Wenming Tian & Can Li, 2023. "Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Carlos Cárdenas-Bravo & Rodrigo Barraza & Antonio Sánchez-Squella & Patricio Valdivia-Lefort & Federico Castillo-Burns, 2021. "Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries," Energies, MDPI, vol. 14(13), pages 1-24, June.
    16. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Ganesan, K. & Winston, D. Prince & Nesamalar, J. Jeslin Drusila & Pravin, M., 2024. "Output power enhancement of a bifacial solar photovoltaic with upside down installation during module defects," Applied Energy, Elsevier, vol. 353(PA).
    18. Patel, M. Tahir & Asadpour, Reza & Bin Jahangir, Jabir & Ryyan Khan, M. & Alam, Muhammad A., 2023. "Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms," Applied Energy, Elsevier, vol. 329(C).
    19. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    20. Zhang, Wei & Zhao, Oufan & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhong, Jianmei & Zeng, Xiding & Zou, Ruiwen, 2023. "Factors influence analysis and life cycle assessment of innovative bifacial photovoltaic applied on building facade," Energy, Elsevier, vol. 279(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46620-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.