IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6234-d284389.html
   My bibliography  Save this article

Outdoor Performance Test of Bifacial n-Type Silicon Photovoltaic Modules

Author

Listed:
  • Hyeonwook Park

    (School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea)

  • Sungho Chang

    (Solar research and development lab, LG Electronics, Gumi-si 39381, Korea)

  • Sanghwan Park

    (School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
    Solar research and development lab, LG Electronics, Gumi-si 39381, Korea)

  • Woo Kyoung Kim

    (School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea)

Abstract

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.

Suggested Citation

  • Hyeonwook Park & Sungho Chang & Sanghwan Park & Woo Kyoung Kim, 2019. "Outdoor Performance Test of Bifacial n-Type Silicon Photovoltaic Modules," Sustainability, MDPI, vol. 11(22), pages 1-10, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6234-:d:284389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Caixia Zhang & Honglie Shen & Luanhong Sun & Jiale Yang & Shiliang Wu & Zhonglin Lu, 2020. "Bifacial p-Type PERC Solar Cell with Efficiency over 22% Using Laser Doped Selective Emitter," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Amir A. Abdallah & Maulid Kivambe & Brahim Aïssa & Benjamin W. Figgis, 2023. "Performance of Monofacial and Bifacial Silicon Heterojunction Modules under Desert Conditions and the Impact of PV Soiling," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    4. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsaounis, Th. & Kotsovos, K. & Gereige, I. & Basaheeh, A. & Abdullah, M. & Khayat, A. & Al-Habshi, E. & Al-Saggaf, A. & Tzavaras, A.E., 2019. "Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1285-1298.
    2. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    3. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    4. Tao, Yunkun & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Yue & Li, Jian & Attaher, Harouna Kerzika, 2021. "Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: A comprehensive study," Applied Energy, Elsevier, vol. 303(C).
    5. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.
    7. Wang Lai Wang & Marek Kryszak, 2020. "Technological Progress and Supply Base under Uncertain Market Conditions: The Case Study of the Taiwanese c-Si Solar Industry 2016–2019," Energies, MDPI, vol. 13(21), pages 1-25, November.
    8. Ganesan, K. & Winston, D. Prince & Nesamalar, J. Jeslin Drusila & Pravin, M., 2024. "Output power enhancement of a bifacial solar photovoltaic with upside down installation during module defects," Applied Energy, Elsevier, vol. 353(PA).
    9. Patel, M. Tahir & Asadpour, Reza & Bin Jahangir, Jabir & Ryyan Khan, M. & Alam, Muhammad A., 2023. "Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms," Applied Energy, Elsevier, vol. 329(C).
    10. Zhang, Wei & Zhao, Oufan & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhong, Jianmei & Zeng, Xiding & Zou, Ruiwen, 2023. "Factors influence analysis and life cycle assessment of innovative bifacial photovoltaic applied on building facade," Energy, Elsevier, vol. 279(C).
    11. Gu, Wenbo & Li, Senji & Liu, Xing & Chen, Zhenwu & Zhang, Xiaochun & Ma, Tao, 2021. "Experimental investigation of the bifacial photovoltaic module under real conditions," Renewable Energy, Elsevier, vol. 173(C), pages 1111-1122.
    12. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    13. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    14. Agata Zdyb & Dariusz Sobczyński, 2024. "An Assessment of a Photovoltaic System’s Performance Based on the Measurements of Electric Parameters under Changing External Conditions," Energies, MDPI, vol. 17(9), pages 1-22, May.
    15. Kim, James Hyungkwan & Mills, Andrew D. & Wiser, Ryan & Bolinger, Mark & Gorman, Will & Crespo Montañes, Cristina & O'Shaughnessy, Eric, 2021. "Project developer options to enhance the value of solar electricity as solar and storage penetrations increase," Applied Energy, Elsevier, vol. 304(C).
    16. Ewe, Win Eng & Fudholi, Ahmad & Sopian, Kamaruzzaman & Moshery, Refat & Asim, Nilofar & Nuriana, Wahidin & Ibrahim, Adnan, 2022. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector," Energy, Elsevier, vol. 254(PB).
    17. Mouhib, Elmehdi & Fernández-Solas, Álvaro & Pérez-Higueras, Pedro J. & Fernández-Ocaña, Ana M. & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2024. "Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems," Applied Energy, Elsevier, vol. 359(C).
    18. Juhee Jang & Kyungsoo Lee, 2020. "Practical Performance Analysis of a Bifacial PV Module and System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    19. Ganesan, K. & Winston, D. Prince & Sugumar, S. & Prasath, T. Hari, 2024. "Performance investigation of n-type PERT bifacial solar photovoltaic module installed at different elevations," Renewable Energy, Elsevier, vol. 227(C).
    20. Polo, Jesús & Alonso-Abella, Miguel & Marcos, Ana & Sanz-Saiz, Carlos & Martín-Chivelet, Nuria, 2024. "On the use of reference modules in characterizing the performance of bifacial modules for rooftop canopy applications," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6234-:d:284389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.