IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46480-9.html
   My bibliography  Save this article

Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance

Author

Listed:
  • Xianke Xiang

    (Tsinghua University
    Tsinghua University)

  • Yao He

    (Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University)

  • Zemin Zhang

    (Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University
    Shenzhen Bay Lab)

  • Xuerui Yang

    (Tsinghua University
    Tsinghua University)

Abstract

RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.

Suggested Citation

  • Xianke Xiang & Yao He & Zemin Zhang & Xuerui Yang, 2024. "Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46480-9
    DOI: 10.1038/s41467-024-46480-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46480-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46480-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Veronique M. Braud & David S. J. Allan & Christopher A. O'Callaghan & Kalle Söderström & Annalisa D'Andrea & Graham S. Ogg & Sasha Lazetic & Neil T. Young & John I. Bell & Joseph H. Phillips & Lewis L, 1998. "HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C," Nature, Nature, vol. 391(6669), pages 795-799, February.
    2. Yair Aaronson & Eran Meshorer, 2013. "Regulation by alternative splicing," Nature, Nature, vol. 498(7453), pages 176-177, June.
    3. Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
    4. Christian Mertes & Ines F. Scheller & Vicente A. Yépez & Muhammed H. Çelik & Yingjiqiong Liang & Laura S. Kremer & Mirjana Gusic & Holger Prokisch & Julien Gagneur, 2021. "Detection of aberrant splicing events in RNA-seq data using FRASER," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Takayoshi Yamauchi & Toshifumi Hoki & Takaaki Oba & Vaibhav Jain & Hongbin Chen & Kristopher Attwood & Sebastiano Battaglia & Saby George & Gurkamal Chatta & Igor Puzanov & Carl Morrison & Kunle Oduns, 2021. "T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Hong Han & Manuel Irimia & P. Joel Ross & Hoon-Ki Sung & Babak Alipanahi & Laurent David & Azadeh Golipour & Mathieu Gabut & Iacovos P. Michael & Emil N. Nachman & Eric Wang & Dan Trcka & Tadeo Thomps, 2013. "MBNL proteins repress ES-cell-specific alternative splicing and reprogramming," Nature, Nature, vol. 498(7453), pages 241-245, June.
    7. Mihriban Karaayvaz & Simona Cristea & Shawn M. Gillespie & Anoop P. Patel & Ravindra Mylvaganam & Christina C. Luo & Michelle C. Specht & Bradley E. Bernstein & Franziska Michor & Leif W. Ellisen, 2018. "Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Wei Vivian Li & Jingyi Jessica Li, 2018. "An accurate and robust imputation method scImpute for single-cell RNA-seq data," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    3. Chhetri, Netra & Ghimire, Rajiv & Wagner, Melissa & Wang, Meng, 2020. "Global citizen deliberation: Case of world-wide views on climate and energy," Energy Policy, Elsevier, vol. 147(C).
    4. Ieva Burakauskaitė & Andrius Čiginas, 2023. "An Approach to Integrating a Non-Probability Sample in the Population Census," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    5. Carlos Miguel Lemos & Ross Joseph Gore & Ivan Puga-Gonzalez & F LeRon Shults, 2019. "Dimensionality and factorial invariance of religiosity among Christians and the religiously unaffiliated: A cross-cultural analysis based on the International Social Survey Programme," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-36, May.
    6. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Tobias Bexte & Nawid Albinger & Ahmad Al Ajami & Philipp Wendel & Leon Buchinger & Alec Gessner & Jamal Alzubi & Vinzenz Särchen & Meike Vogler & Hadeer Mohamed Rasheed & Beate Anahita Jung & Sebastia, 2024. "CRISPR/Cas9 editing of NKG2A improves the efficacy of primary CD33-directed chimeric antigen receptor natural killer cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Wanying Wu & Jinyang Zhang & Xiaofei Cao & Zhengyi Cai & Fangqing Zhao, 2022. "Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
    13. Samorodnitsky, Sarah & Wendt, Chris H. & Lock, Eric F., 2024. "Bayesian simultaneous factorization and prediction using multi-omic data," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    14. Sonja Herrmann & Christian Nagel, 2023. "Early Careers of Graduates from Private and Public Universities in Germany: A Comparison of Income Differences Regarding the First Employment," Research in Higher Education, Springer;Association for Institutional Research, vol. 64(1), pages 129-146, February.
    15. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Oliver Hirsch & Charles Christian Adarkwah, 2018. "The Issue of Burnout and Work Satisfaction in Younger GPs—A Cluster Analysis Utilizing the HaMEdSi Study," IJERPH, MDPI, vol. 15(10), pages 1-10, October.
    17. Minhui Chen & Andy Dahl, 2024. "A robust model for cell type-specific interindividual variation in single-cell RNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.
    19. Marc Kuhn & Viola Marquardt & Sarah Selinka, 2021. "“Is Sharing Really Caring?”: The Role of Environmental Concern and Trust Reflecting Usage Intention of “Station-Based” and “Free-Floating”—Carsharing Business Models," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    20. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46480-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.