IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46357-x.html
   My bibliography  Save this article

ALKBH5-mediated m6A modification of IL-11 drives macrophage-to-myofibroblast transition and pathological cardiac fibrosis in mice

Author

Listed:
  • Tao Zhuang

    (Fudan University)

  • Mei-Hua Chen

    (Fudan University
    Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine)

  • Ruo-Xi Wu

    (Fudan University)

  • Jing Wang

    (Fudan University)

  • Xi-De Hu

    (Fudan University)

  • Ting Meng

    (Fudan University)

  • Ai-Hua Wu

    (Fudan University)

  • Yan Li

    (Shanghai Jiao Tong University School of Medicine)

  • Yong-Feng Yang

    (Fudan University)

  • Yu Lei

    (Fudan University)

  • Dong-Hua Hu

    (Fudan University)

  • Yan-Xiu Li

    (The First Affiliated Hospital of Nanjing Medical University)

  • Li Zhang

    (Shanghai Jiaotong University School of Medicine)

  • Ai-Jun Sun

    (Shanghai Institute of Cardiovascular Diseases)

  • Wei Lu

    (Fudan University)

  • Guan-Nan Zhang

    (Nanjing Medical University)

  • Jun-Li Zuo

    (Shanghai Jiao Tong University School of Medicine)

  • Cheng-Chao Ruan

    (Fudan University)

Abstract

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.

Suggested Citation

  • Tao Zhuang & Mei-Hua Chen & Ruo-Xi Wu & Jing Wang & Xi-De Hu & Ting Meng & Ai-Hua Wu & Yan Li & Yong-Feng Yang & Yu Lei & Dong-Hua Hu & Yan-Xiu Li & Li Zhang & Ai-Jun Sun & Wei Lu & Guan-Nan Zhang & J, 2024. "ALKBH5-mediated m6A modification of IL-11 drives macrophage-to-myofibroblast transition and pathological cardiac fibrosis in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46357-x
    DOI: 10.1038/s41467-024-46357-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46357-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46357-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Schafer & Sivakumar Viswanathan & Anissa A. Widjaja & Wei-Wen Lim & Aida Moreno-Moral & Daniel M. DeLaughter & Benjamin Ng & Giannino Patone & Kingsley Chow & Ester Khin & Jessie Tan & Sonia, 2017. "IL-11 is a crucial determinant of cardiovascular fibrosis," Nature, Nature, vol. 552(7683), pages 110-115, December.
    2. Pearl Quijada & Michael A. Trembley & Adwiteeya Misra & Jacquelyn A. Myers & Cameron D. Baker & Marta Pérez-Hernández & Jason R. Myers & Ronald A. Dirkx & Ethan David Cohen & Mario Delmar & John M. As, 2021. "Coordination of endothelial cell positioning and fate specification by the epicardium," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Chen-Leng Cai & Jody C. Martin & Yunfu Sun & Li Cui & Lianchun Wang & Kunfu Ouyang & Lei Yang & Lei Bu & Xingqun Liang & Xiaoxue Zhang & William B. Stallcup & Christopher P. Denton & Andrew McCulloch , 2008. "A myocardial lineage derives from Tbx18 epicardial cells," Nature, Nature, vol. 454(7200), pages 104-108, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirong Cao & Yu Pan & Andrew S. Terker & Juan Pablo Arroyo Ornelas & Yinqiu Wang & Jiaqi Tang & Aolei Niu & Sarah Abu Kar & Mengdi Jiang & Wentian Luo & Xinyu Dong & Xiaofeng Fan & Suwan Wang & Matth, 2023. "Epidermal growth factor receptor activation is essential for kidney fibrosis development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Emmanuel Ekow Asmah & Francis Kwaw Andoh & Edem Titriku, 2020. "Trade misinvoicing effects on tax revenue in sub‐Saharan Africa: The role of tax holidays and regulatory quality," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 91(4), pages 649-672, December.
    3. Jeremy Lotto & Rebecca Cullum & Sibyl Drissler & Martin Arostegui & Victoria C. Garside & Bettina M. Fuglerud & Makenna Clement-Ranney & Avinash Thakur & T. Michael Underhill & Pamela A. Hoodless, 2023. "Cell diversity and plasticity during atrioventricular heart valve EMTs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Riley D. Metcalfe & Eric Hanssen & Ka Yee Fung & Kaheina Aizel & Clara C. Kosasih & Courtney O. Zlatic & Larissa Doughty & Craig J. Morton & Andrew P. Leis & Michael W. Parker & Paul R. Gooley & Tracy, 2023. "Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Jenniffer Linares & Anna Sallent-Aragay & Jordi Badia-Ramentol & Alba Recort-Bascuas & Ana Méndez & Noemí Manero-Rupérez & Daniele Lo Re & Elisa I. Rivas & Marc Guiu & Melissa Zwick & Mar Iglesias & C, 2023. "Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Anissa A. Widjaja & Sivakumar Viswanathan & Shamini G. Shekeran & Eleonora Adami & Wei-Wen Lim & Sonia Chothani & Jessie Tan & Joyce Wei Ting Goh & Hui Mei Chen & Sze Yun Lim & Carine M. Boustany-Kari, 2022. "Targeting endogenous kidney regeneration using anti-IL11 therapy in acute and chronic models of kidney disease," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Yasufumi Katanasaka & Harumi Yabe & Noriyuki Murata & Minori Sobukawa & Yuga Sugiyama & Hikaru Sato & Hiroki Honda & Yoichi Sunagawa & Masafumi Funamoto & Satoshi Shimizu & Kana Shimizu & Toshihide Ha, 2024. "Fibroblast-specific PRMT5 deficiency suppresses cardiac fibrosis and left ventricular dysfunction in male mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Qian-Qian Chen & Kang Liu & Ning Shi & Gaoxiang Ma & Peipei Wang & Hua-Mei Xie & Si-Jia Jin & Ting-Ting Wei & Xiang-Yu Yu & Yi Wang & Jun-Yuan Zhang & Ping Li & Lian-Wen Qi & Lei Zhang, 2023. "Neuraminidase 1 promotes renal fibrosis development in male mice," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Benjamin Ng & Kevin Y. Huang & Chee Jian Pua & Sivakumar Viswanathan & Wei-Wen Lim & Fathima F. Kuthubudeen & Yu-Ning Liu & An An Hii & Benjamin L. George & Anissa A. Widjaja & Enrico Petretto & Stuar, 2024. "Interleukin-11 causes alveolar type 2 cell dysfunction and prevents alveolar regeneration," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Jack S. Gisby & Norzawani B. Buang & Artemis Papadaki & Candice L. Clarke & Talat H. Malik & Nicholas Medjeral-Thomas & Damiola Pinheiro & Paige M. Mortimer & Shanice Lewis & Eleanor Sandhu & Stephen , 2022. "Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    13. Elena Astanina & Gabriella Doronzo & Davide Corà & Francesco Neri & Salvatore Oliviero & Tullio Genova & Federico Mussano & Emanuele Middonti & Edoardo Vallariello & Chiara Cencioni & Donatella Valdem, 2022. "The TFEB-TGIF1 axis regulates EMT in mouse epicardial cells," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    14. Pengcheng Yang & Lihang Zhu & Shiya Wang & Jixing Gong & Jonathan Nimal Selvaraj & Lincai Ye & Hanxiao Chen & Yaoyao Zhang & Gongxin Wang & Wanjun Song & Zilong Li & Lin Cai & Hao Zhang & Donghui Zhan, 2024. "Engineered model of heart tissue repair for exploring fibrotic processes and therapeutic interventions," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46357-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.