IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38366-z.html
   My bibliography  Save this article

Tailoring vapor film beneath a Leidenfrost drop

Author

Listed:
  • An Li

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huizeng Li

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Sijia Lyu

    (Tsinghua University)

  • Zhipeng Zhao

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Luanluan Xue

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zheng Li

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Kaixuan Li

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Mingzhu Li

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Chao Sun

    (Tsinghua University
    Tsinghua University)

  • Yanlin Song

    (CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

For a drop on a very hot solid surface, a vapor film will form beneath the drop, which has been discovered by Leidenfrost in 1756. The vapor escaping from the Leidenfrost film causes uncontrollable flows, and actuates the drop to move around. Recently, although numerous strategies have been used to regulate the Leidenfrost vapor, the understanding of surface chemistry for modulating the phase-change vapor dynamics remains incomplete. Here, we report how to rectify vapor by “cutting” the Leidenfrost film using chemically heterogeneous surfaces. We demonstrate that the segmented film cut by a Z-shaped pattern can spin a drop, since the superhydrophilic region directly contacts the drop and vaporizes the water, while a vapor film is formed on the superhydrophobic surrounding to jet vapor and reduce heat transfer. Furthermore, we reveal the general principle between the pattern symmetry design and the drop dynamics. This finding provides new insights into the Leidenfrost dynamics modulation, and opens a promising avenue for vapor-driven miniature devices.

Suggested Citation

  • An Li & Huizeng Li & Sijia Lyu & Zhipeng Zhao & Luanluan Xue & Zheng Li & Kaixuan Li & Mingzhu Li & Chao Sun & Yanlin Song, 2023. "Tailoring vapor film beneath a Leidenfrost drop," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38366-z
    DOI: 10.1038/s41467-023-38366-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38366-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38366-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gary G. Wells & Rodrigo Ledesma-Aguilar & Glen McHale & Khellil Sefiane, 2015. "A sublimation heat engine," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    2. Wanghuai Xu & Huanxi Zheng & Yuan Liu & Xiaofeng Zhou & Chao Zhang & Yuxin Song & Xu Deng & Michael Leung & Zhengbao Yang & Ronald X. Xu & Zhong Lin Wang & Xiao Cheng Zeng & Zuankai Wang, 2020. "A droplet-based electricity generator with high instantaneous power density," Nature, Nature, vol. 578(7795), pages 392-396, February.
    3. Denis Richard & Christophe Clanet & David Quéré, 2002. "Contact time of a bouncing drop," Nature, Nature, vol. 417(6891), pages 811-811, June.
    4. Agrawal, Prashant & Wells, Gary G. & Ledesma-Aguilar, Rodrigo & McHale, Glen & Buchoux, Anthony & Stokes, Adam & Sefiane, Khellil, 2019. "Leidenfrost heat engine: Sustained rotation of levitating rotors on turbine-inspired substrates," Applied Energy, Elsevier, vol. 240(C), pages 399-408.
    5. Thomas M. Schutzius & Stefan Jung & Tanmoy Maitra & Gustav Graeber & Moritz Köhme & Dimos Poulikakos, 2015. "Spontaneous droplet trampolining on rigid superhydrophobic surfaces," Nature, Nature, vol. 527(7576), pages 82-85, November.
    6. Mengnan Jiang & Yang Wang & Fayu Liu & Hanheng Du & Yuchao Li & Huanhuan Zhang & Suet To & Steven Wang & Chin Pan & Jihong Yu & David Quéré & Zuankai Wang, 2022. "Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling," Nature, Nature, vol. 601(7894), pages 568-572, January.
    7. James C. Bird & Rajeev Dhiman & Hyuk-Min Kwon & Kripa K. Varanasi, 2013. "Reducing the contact time of a bouncing drop," Nature, Nature, vol. 503(7476), pages 385-388, November.
    8. N. J. Cira & A. Benusiglio & M. Prakash, 2015. "Vapour-mediated sensing and motility in two-component droplets," Nature, Nature, vol. 519(7544), pages 446-450, March.
    9. Huizeng Li & Wei Fang & Yanan Li & Qiang Yang & Mingzhu Li & Qunyang Li & Xi-Qiao Feng & Yanlin Song, 2019. "Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Ying Zhou & Chenguang Zhang & Wenchang Zhao & Shiyu Wang & Pingan Zhu, 2023. "Suppression of hollow droplet rebound on super-repellent surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Cong Liu & Chenguang Lu & Zichao Yuan & Cunjing Lv & Yahua Liu, 2022. "Steerable drops on heated concentric microgroove arrays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Man Hu & Feng Wang & Li Chen & Peng Huo & Yuqi Li & Xi Gu & Kai Leong Chong & Daosheng Deng, 2022. "Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    9. Yuhang Dai & Minfei Li & Bingqiang Ji & Xiong Wang & Siyan Yang & Peng Yu & Steven Wang & Chonglei Hao & Zuankai Wang, 2023. "Liquid metal droplets bouncing higher on thicker water layer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    11. Agrawal, Prashant & Wells, Gary G. & Ledesma-Aguilar, Rodrigo & McHale, Glen & Buchoux, Anthony & Stokes, Adam & Sefiane, Khellil, 2019. "Leidenfrost heat engine: Sustained rotation of levitating rotors on turbine-inspired substrates," Applied Energy, Elsevier, vol. 240(C), pages 399-408.
    12. Wu, Jie & Li, Ya-Dong, 2016. "Dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 158-170.
    13. Agrawal, Prashant & Wells, Gary G. & Ledesma-Aguilar, Rodrigo & McHale, Glen & Sefiane, Khellil, 2021. "Beyond Leidenfrost levitation: A thin-film boiling engine for controlled power generation," Applied Energy, Elsevier, vol. 287(C).
    14. Xu, Zhongwei & Li, Dianlun & Wang, Kun & Liu, Ye & Wang, Jiaxin & Qiu, Zhirong & Wu, Chaoxing & Lin, Jintang & Guo, Tailiang & Li, Fushan, 2022. "Stomatopod-inspired integrate-and-fire triboelectric nanogenerator for harvesting mechanical energy with ultralow vibration speed," Applied Energy, Elsevier, vol. 312(C).
    15. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Guoying Bai & Haiyan Zhang & Dong Gao & Houguo Fei & Cunlan Guo & Mingxia Ren & Yufeng Liu, 2024. "Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Luanluan Xue & An Li & Huizeng Li & Xinye Yu & Kaixuan Li & Renxuan Yuan & Xiao Deng & Rujun Li & Quan Liu & Yanlin Song, 2024. "Droplet-based mechanical transducers modulated by the symmetry of wettability patterns," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38366-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.