IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28896-3.html
   My bibliography  Save this article

Tau deposition patterns are associated with functional connectivity in primary tauopathies

Author

Listed:
  • Nicolai Franzmeier

    (University Hospital of Munich, LMU Munich)

  • Matthias Brendel

    (University Hospital of Munich, LMU Munich
    Munich Cluster for Systems Neurology (SyNergy))

  • Leonie Beyer

    (University Hospital of Munich, LMU Munich)

  • Luna Slemann

    (University Hospital of Munich, LMU Munich)

  • Gabor G. Kovacs

    (University of Pennsylvania
    University of Toronto
    University Health Network)

  • Thomas Arzberger

    (Munich Cluster for Systems Neurology (SyNergy)
    German Center for Neurodegenerative Diseases (DZNE)
    University Hospital, LMU Munich
    Center for Neuropathology and Prion Research, LMU Munich)

  • Carolin Kurz

    (German Center for Neurodegenerative Diseases (DZNE)
    University Hospital, LMU Munich)

  • Gesine Respondek

    (German Center for Neurodegenerative Diseases (DZNE)
    Technical University of Munich
    Hannover Medical School)

  • Milica J. Lukic

    (German Center for Neurodegenerative Diseases (DZNE)
    CCS, University of Belgrade)

  • Davina Biel

    (University Hospital of Munich, LMU Munich)

  • Anna Rubinski

    (University Hospital of Munich, LMU Munich)

  • Lukas Frontzkowski

    (University Hospital of Munich, LMU Munich)

  • Selina Hummel

    (University Hospital of Munich, LMU Munich)

  • Andre Müller

    (Life Molecular Imaging GmbH)

  • Anika Finze

    (University Hospital of Munich, LMU Munich)

  • Carla Palleis

    (Munich Cluster for Systems Neurology (SyNergy)
    German Center for Neurodegenerative Diseases (DZNE)
    University Hospital of Munich, LMU Munich)

  • Emanuel Joseph

    (University Hospital of Munich, LMU Munich)

  • Endy Weidinger

    (University Hospital of Munich, LMU Munich)

  • Sabrina Katzdobler

    (University Hospital of Munich, LMU Munich)

  • Mengmeng Song

    (University Hospital of Munich, LMU Munich)

  • Gloria Biechele

    (University Hospital of Munich, LMU Munich)

  • Maike Kern

    (University Hospital of Munich, LMU Munich)

  • Maximilian Scheifele

    (University Hospital of Munich, LMU Munich)

  • Boris-Stephan Rauchmann

    (University Hospital of Munich, LMU Munich)

  • Robert Perneczky

    (Munich Cluster for Systems Neurology (SyNergy)
    German Center for Neurodegenerative Diseases (DZNE)
    University Hospital, LMU Munich
    Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College)

  • Michael Rullman

    (University Hospital Leipzig)

  • Marianne Patt

    (University Hospital Leipzig)

  • Andreas Schildan

    (University Hospital Leipzig)

  • Henryk Barthel

    (University Hospital Leipzig)

  • Osama Sabri

    (University Hospital Leipzig)

  • Jost J. Rumpf

    (University Hospital of Munich, LMU Munich
    University Hospital Cologne)

  • Matthias L. Schroeter

    (University Hospital of Munich, LMU Munich
    University Hospital Cologne)

  • Joseph Classen

    (University Hospital Leipzig)

  • Victor Villemagne

    (Department of Molecular Imaging & Therapy, Austin Health
    University of Pittsburgh
    Austin Health, The University of Melbourne)

  • John Seibyl

    (InviCRO, LLC
    Molecular Neuroimaging, A Division of inviCRO)

  • Andrew W. Stephens

    (Life Molecular Imaging GmbH)

  • Edward B. Lee

    (University of Pennsylvania)

  • David G. Coughlin

    (University of Pennsylvania
    University of California, La Jolla)

  • Armin Giese

    (Center for Neuropathology and Prion Research, LMU Munich)

  • Murray Grossman

    (University of Pennsylvania
    University of Pennsylvania)

  • Corey T. McMillan

    (University of Pennsylvania
    University of Pennsylvania)

  • Ellen Gelpi

    (Neurological Tissue Bank and Neurology Department, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, CERCA
    Institute of Neurology, Medical University of Vienna)

  • Laura Molina-Porcel

    (Neurological Tissue Bank and Neurology Department, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, CERCA
    Institute of Neurology, Medical University of Vienna)

  • Yaroslau Compta

    (Parkinson’s Disease & Movement Disorders Unit, Hospital Clínic / IDIBAPS / CIBERNED (CB06/05/0018-ISCIII), / European Reference Network for Rare Neurological Diseases (ERN-RND) / Institut de Neurociències (Maria de Maeztu Center), Universitat de Barcelona)

  • John C. Swieten

    (Erasmus Medical Centre)

  • Laura Donker Laat

    (Erasmus Medical Center)

  • Claire Troakes

    (London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London)

  • Safa Al-Sarraj

    (London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London)

  • John L. Robinson

    (University of Pennsylvania)

  • Sharon X. Xie

    (University of Pennsylvania)

  • David J. Irwin

    (Technical University of Munich
    University of Pennsylvania)

  • Sigrun Roeber

    (Center for Neuropathology and Prion Research, LMU Munich)

  • Jochen Herms

    (German Center for Neurodegenerative Diseases (DZNE))

  • Mikael Simons

    (German Center for Neurodegenerative Diseases (DZNE))

  • Peter Bartenstein

    (University Hospital of Munich, LMU Munich)

  • Virginia M. Lee

    (University of Pennsylvania)

  • John Q. Trojanowski

    (University of Pennsylvania)

  • Johannes Levin

    (Munich Cluster for Systems Neurology (SyNergy)
    German Center for Neurodegenerative Diseases (DZNE)
    University Hospital of Munich, LMU Munich)

  • Günter Höglinger

    (German Center for Neurodegenerative Diseases (DZNE)
    Hannover Medical School)

  • Michael Ewers

    (University Hospital of Munich, LMU Munich
    German Center for Neurodegenerative Diseases (DZNE))

Abstract

Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2nd generation 18F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples (n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.

Suggested Citation

  • Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28896-3
    DOI: 10.1038/s41467-022-28896-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28896-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28896-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolai Franzmeier & Julia Neitzel & Anna Rubinski & Ruben Smith & Olof Strandberg & Rik Ossenkoppele & Oskar Hansson & Michael Ewers, 2020. "Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    2. Zhuohao He & Jennifer D. McBride & Hong Xu & Lakshmi Changolkar & Soo-jung Kim & Bin Zhang & Sneha Narasimhan & Garrett S. Gibbons & Jing L. Guo & Michael Kozak & Gerard D. Schellenberg & John Q. Troj, 2020. "Transmission of tauopathy strains is independent of their isoform composition," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    3. Yang Shi & Wenjuan Zhang & Yang Yang & Alexey G. Murzin & Benjamin Falcon & Abhay Kotecha & Mike Beers & Airi Tarutani & Fuyuki Kametani & Holly J. Garringer & Ruben Vidal & Grace I. Hallinan & Tammar, 2021. "Structure-based classification of tauopathies," Nature, Nature, vol. 598(7880), pages 359-363, October.
    4. Jacob W. Vogel & Yasser Iturria-Medina & Olof T. Strandberg & Ruben Smith & Elizabeth Levitis & Alan C. Evans & Oskar Hansson, 2020. "Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julie Ottoy & Min Su Kang & Jazlynn Xiu Min Tan & Lyndon Boone & Reinder Vos de Wael & Bo-yong Park & Gleb Bezgin & Firoza Z. Lussier & Tharick A. Pascoal & Nesrine Rahmouni & Jenna Stevenson & Jaime , 2024. "Tau follows principal axes of functional and structural brain organization in Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Nicolai Franzmeier & Amir Dehsarvi & Anna Steward & Davina Biel & Anna Dewenter & Sebastian Niclas Roemer & Fabian Wagner & Mattes Groß & Matthias Brendel & Alexis Moscoso & Prithvi Arunachalam & Kaj , 2024. "Elevated CSF GAP-43 is associated with accelerated tau accumulation and spread in Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexa Pichet Binette & Nicolai Franzmeier & Nicola Spotorno & Michael Ewers & Matthias Brendel & Davina Biel & Olof Strandberg & Shorena Janelidze & Sebastian Palmqvist & Niklas Mattsson-Carlgren & Ru, 2022. "Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Sukanta Jash & Sayani Banerjee & Shibin Cheng & Bin Wang & Chenxi Qiu & Asami Kondo & Jan Ernerudh & Xiao Zhen Zhou & Kun Ping Lu & Surendra Sharma, 2023. "Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Julie Ottoy & Min Su Kang & Jazlynn Xiu Min Tan & Lyndon Boone & Reinder Vos de Wael & Bo-yong Park & Gleb Bezgin & Firoza Z. Lussier & Tharick A. Pascoal & Nesrine Rahmouni & Jenna Stevenson & Jaime , 2024. "Tau follows principal axes of functional and structural brain organization in Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Lukas Frontzkowski & Michael Ewers & Matthias Brendel & Davina Biel & Rik Ossenkoppele & Paul Hager & Anna Steward & Anna Dewenter & Sebastian Römer & Anna Rubinski & Katharina Buerger & Daniel Janowi, 2022. "Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Aurelio J. Dregni & Pu Duan & Hong Xu & Lakshmi Changolkar & Nadia El Mammeri & Virginia M.-Y. Lee & Mei Hong, 2022. "Fluent molecular mixing of Tau isoforms in Alzheimer’s disease neurofibrillary tangles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Tim Schulte & Antonio Chaves-Sanjuan & Valentina Speranzini & Kevin Sicking & Melissa Milazzo & Giulia Mazzini & Paola Rognoni & Serena Caminito & Paolo Milani & Chiara Marabelli & Alessandro Corbelli, 2024. "Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Galina Limorenko & Meltem Tatli & Rajasekhar Kolla & Sergey Nazarov & Marie-Theres Weil & David C. Schöndorf & Daniela Geist & Peter Reinhardt & Dagmar E. Ehrnhoefer & Henning Stahlberg & Laura Gaspar, 2023. "Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Szymon W. Manka & Wenjuan Zhang & Adam Wenborn & Jemma Betts & Susan Joiner & Helen R. Saibil & John Collinge & Jonathan D. F. Wadsworth, 2022. "2.7 Å cryo-EM structure of ex vivo RML prion fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Inbal Maniv & Mahasen Sarji & Anwar Bdarneh & Alona Feldman & Roi Ankawa & Elle Koren & Inbar Magid-Gold & Noa Reis & Despina Soteriou & Shiran Salomon-Zimri & Tali Lavy & Ellina Kesselman & Naama Koi, 2023. "Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Satra Nim & Darren M. O’Hara & Carles Corbi-Verge & Albert Perez-Riba & Kazuko Fujisawa & Minesh Kapadia & Hien Chau & Federica Albanese & Grishma Pawar & Mitchell L. Snoo & Sophie G. Ngana & Jisun Ki, 2023. "Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson’s disease," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Nathalie Kyalu Ngoie Zola & Clémence Balty & Sébastien Pyr dit Ruys & Axelle A. T. Vanparys & Nicolas D. G. Huyghe & Gaëtan Herinckx & Manuel Johanns & Emilien Boyer & Pascal Kienlen-Campard & Mark H., 2023. "Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Peter Kunach & Jaime Vaquer-Alicea & Matthew S. Smith & Jim Monistrol & Robert Hopewell & Luc Moquin & Joseph Therriault & Cecile Tissot & Nesrine Rahmouni & Gassan Massarweh & Jean-Paul Soucy & Marie, 2024. "Cryo-EM structure of Alzheimer’s disease tau filaments with PET ligand MK-6240," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Levent Sari & Sofia Bali & Lukasz A. Joachimiak & Milo M. Lin, 2024. "Hairpin trimer transition state of amyloid fibril," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28896-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.