IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39328-1.html
   My bibliography  Save this article

Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies

Author

Listed:
  • Nathalie Kyalu Ngoie Zola

    (Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS)
    Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS))

  • Clémence Balty

    (Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS))

  • Sébastien Pyr dit Ruys

    (Universite catholique de Louvain (UClouvain) and Louvain Drug Research Institute (LDRI), Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK))

  • Axelle A. T. Vanparys

    (Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS))

  • Nicolas D. G. Huyghe

    (Université catholique de Louvain (UCLouvain) and Institut de Recherche Expérimentale et Clinique (IREC))

  • Gaëtan Herinckx

    (Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform)

  • Manuel Johanns

    (Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS))

  • Emilien Boyer

    (Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS)
    Cliniques universitaires Saint-Luc, Neurology Department)

  • Pascal Kienlen-Campard

    (Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS))

  • Mark H. Rider

    (Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS))

  • Didier Vertommen

    (Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform)

  • Bernard J. Hanseeuw

    (Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS)
    Cliniques universitaires Saint-Luc, Neurology Department
    Universite catholique de Louvain (UCLouvain), WELBIO department, WEL Research Institute
    Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Gordon Center for Medical Imaging)

Abstract

Tau protein aggregates in several neurodegenerative disorders, referred to as tauopathies. The tau isoforms observed in post mortem human brain aggregates is used to classify tauopathies. However, distinguishing tauopathies ante mortem remains challenging, potentially due to differences between insoluble tau in aggregates and soluble tau in body fluids. Here, we demonstrated that tau isoforms differ between tauopathies in insoluble aggregates, but not in soluble brain extracts. We therefore characterized post-translational modifications of both the aggregated and the soluble tau protein obtained from post mortem human brain tissue of patients with Alzheimer’s disease, cortico-basal degeneration, Pick’s disease, and frontotemporal lobe degeneration. We found specific soluble signatures for each tauopathy and its specific aggregated tau isoforms: including ubiquitination on Lysine 369 for cortico-basal degeneration and acetylation on Lysine 311 for Pick’s disease. These findings provide potential targets for future development of fluid-based biomarker assays able to distinguish tauopathies in vivo.

Suggested Citation

  • Nathalie Kyalu Ngoie Zola & Clémence Balty & Sébastien Pyr dit Ruys & Axelle A. T. Vanparys & Nicolas D. G. Huyghe & Gaëtan Herinckx & Manuel Johanns & Emilien Boyer & Pascal Kienlen-Campard & Mark H., 2023. "Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39328-1
    DOI: 10.1038/s41467-023-39328-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39328-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39328-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Shi & Wenjuan Zhang & Yang Yang & Alexey G. Murzin & Benjamin Falcon & Abhay Kotecha & Mike Beers & Airi Tarutani & Fuyuki Kametani & Holly J. Garringer & Ruben Vidal & Grace I. Hallinan & Tammar, 2021. "Structure-based classification of tauopathies," Nature, Nature, vol. 598(7880), pages 359-363, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Inbal Maniv & Mahasen Sarji & Anwar Bdarneh & Alona Feldman & Roi Ankawa & Elle Koren & Inbar Magid-Gold & Noa Reis & Despina Soteriou & Shiran Salomon-Zimri & Tali Lavy & Ellina Kesselman & Naama Koi, 2023. "Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Gregory E. Merz & Matthew J. Chalkley & Sophia K. Tan & Eric Tse & Joanne Lee & Stanley B. Prusiner & Nick A. Paras & William F. DeGrado & Daniel R. Southworth, 2023. "Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Martin Wilkinson & Rodrigo U. Gallardo & Roberto Maya Martinez & Nicolas Guthertz & Masatomo So & Liam D. Aubrey & Sheena E. Radford & Neil A. Ranson, 2023. "Disease-relevant β2-microglobulin variants share a common amyloid fold," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Kartikay Sharma & Fabian Stockert & Jayakrishna Shenoy & Mélanie Berbon & Muhammed Bilal Abdul-Shukkoor & Birgit Habenstein & Antoine Loquet & Matthias Schmidt & Marcus Fändrich, 2024. "Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Dhruva D. Dhavale & Alexander M. Barclay & Collin G. Borcik & Katherine Basore & Deborah A. Berthold & Isabelle R. Gordon & Jialu Liu & Moses H. Milchberg & Jennifer Y. O’Shea & Michael J. Rau & Zacha, 2024. "Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Galina Limorenko & Meltem Tatli & Rajasekhar Kolla & Sergey Nazarov & Marie-Theres Weil & David C. Schöndorf & Daniela Geist & Peter Reinhardt & Dagmar E. Ehrnhoefer & Henning Stahlberg & Laura Gaspar, 2023. "Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    16. Szymon W. Manka & Wenjuan Zhang & Adam Wenborn & Jemma Betts & Susan Joiner & Helen R. Saibil & John Collinge & Jonathan D. F. Wadsworth, 2022. "2.7 Å cryo-EM structure of ex vivo RML prion fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Sukanta Jash & Sayani Banerjee & Shibin Cheng & Bin Wang & Chenxi Qiu & Asami Kondo & Jan Ernerudh & Xiao Zhen Zhou & Kun Ping Lu & Surendra Sharma, 2023. "Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Levent Sari & Sofia Bali & Lukasz A. Joachimiak & Milo M. Lin, 2024. "Hairpin trimer transition state of amyloid fibril," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Pijush Chakraborty & Gwladys Rivière & Alina Hebestreit & Alain Ibáñez Opakua & Ina M. Vorberg & Loren B. Andreas & Markus Zweckstetter, 2023. "Acetylation discriminates disease-specific tau deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39328-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.