IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45429-2.html
   My bibliography  Save this article

Local structural preferences in shaping tau amyloid polymorphism

Author

Listed:
  • Nikolaos Louros

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

  • Martin Wilkinson

    (School of Molecular and Cellular Biology, University of Leeds)

  • Grigoria Tsaka

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

  • Meine Ramakers

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

  • Chiara Morelli

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

  • Teresa Garcia

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

  • Rodrigo Gallardo

    (School of Molecular and Cellular Biology, University of Leeds)

  • Sam D’Haeyer

    (VIB Screening Core
    Ghent University)

  • Vera Goossens

    (VIB Screening Core
    Ghent University)

  • Dominique Audenaert

    (VIB Screening Core
    Ghent University)

  • Dietmar Rudolf Thal

    (Leuven Brain Institute
    KU Leuven, and Department of Pathology, UZ Leuven)

  • Ian R. Mackenzie

    (University of British Columbia)

  • Rosa Rademakers

    (VIB Center for Molecular Neurology, VIB
    University of Antwerp)

  • Neil A. Ranson

    (School of Molecular and Cellular Biology, University of Leeds)

  • Sheena E. Radford

    (School of Molecular and Cellular Biology, University of Leeds)

  • Frederic Rousseau

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

  • Joost Schymkowitz

    (VIB Center for Brain and Disease Research, Herestraat 49
    Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49)

Abstract

Tauopathies encompass a group of neurodegenerative disorders characterised by diverse tau amyloid fibril structures. The persistence of polymorphism across tauopathies suggests that distinct pathological conditions dictate the adopted polymorph for each disease. However, the extent to which intrinsic structural tendencies of tau amyloid cores contribute to fibril polymorphism remains uncertain. Using a combination of experimental approaches, we here identify a new amyloidogenic motif, PAM4 (Polymorphic Amyloid Motif of Repeat 4), as a significant contributor to tau polymorphism. Calculation of per-residue contributions to the stability of the fibril cores of different pathologic tau structures suggests that PAM4 plays a central role in preserving structural integrity across amyloid polymorphs. Consistent with this, cryo-EM structural analysis of fibrils formed from a synthetic PAM4 peptide shows that the sequence adopts alternative structures that closely correspond to distinct disease-associated tau strains. Furthermore, in-cell experiments revealed that PAM4 deletion hampers the cellular seeding efficiency of tau aggregates extracted from Alzheimer’s disease, corticobasal degeneration, and progressive supranuclear palsy patients, underscoring PAM4’s pivotal role in these tauopathies. Together, our results highlight the importance of the intrinsic structural propensity of amyloid core segments to determine the structure of tau in cells, and in propagating amyloid structures in disease.

Suggested Citation

  • Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45429-2
    DOI: 10.1038/s41467-024-45429-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45429-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45429-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Gregory E. Merz & Matthew J. Chalkley & Sophia K. Tan & Eric Tse & Joanne Lee & Stanley B. Prusiner & Nick A. Paras & William F. DeGrado & Daniel R. Southworth, 2023. "Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Nikolaos Louros & Gabriele Orlando & Matthias Vleeschouwer & Frederic Rousseau & Joost Schymkowitz, 2020. "Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Yang Shi & Wenjuan Zhang & Yang Yang & Alexey G. Murzin & Benjamin Falcon & Abhay Kotecha & Mike Beers & Airi Tarutani & Fuyuki Kametani & Holly J. Garringer & Ruben Vidal & Grace I. Hallinan & Tammar, 2021. "Structure-based classification of tauopathies," Nature, Nature, vol. 598(7880), pages 359-363, October.
    5. Dailu Chen & Kenneth W. Drombosky & Zhiqiang Hou & Levent Sari & Omar M. Kashmer & Bryan D. Ryder & Valerie A. Perez & DaNae R. Woodard & Milo M. Lin & Marc I. Diamond & Lukasz A. Joachimiak, 2019. "Tau local structure shields an amyloid-forming motif and controls aggregation propensity," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    6. Conny Leistner & Martin Wilkinson & Ailidh Burgess & Megan Lovatt & Stanley Goodbody & Yong Xu & Susan Deuchars & Sheena E. Radford & Neil A. Ranson & René A. W. Frank, 2023. "The in-tissue molecular architecture of β-amyloid pathology in the mammalian brain," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Levent Sari & Sofia Bali & Lukasz A. Joachimiak & Milo M. Lin, 2024. "Hairpin trimer transition state of amyloid fibril," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Dailu Chen & Sofia Bali & Ruhar Singh & Aleksandra Wosztyl & Vishruth Mullapudi & Jaime Vaquer-Alicea & Parvathy Jayan & Shamiram Melhem & Harro Seelaar & John C. Swieten & Marc I. Diamond & Lukasz A., 2023. "FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Nikolaos Louros & Meine Ramakers & Emiel Michiels & Katerina Konstantoulea & Chiara Morelli & Teresa Garcia & Nele Moonen & Sam D’Haeyer & Vera Goossens & Dietmar Rudolf Thal & Dominique Audenaert & F, 2022. "Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Tim Schulte & Antonio Chaves-Sanjuan & Valentina Speranzini & Kevin Sicking & Melissa Milazzo & Giulia Mazzini & Paola Rognoni & Serena Caminito & Paolo Milani & Chiara Marabelli & Alessandro Corbelli, 2024. "Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Galina Limorenko & Meltem Tatli & Rajasekhar Kolla & Sergey Nazarov & Marie-Theres Weil & David C. Schöndorf & Daniela Geist & Peter Reinhardt & Dagmar E. Ehrnhoefer & Henning Stahlberg & Laura Gaspar, 2023. "Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Szymon W. Manka & Wenjuan Zhang & Adam Wenborn & Jemma Betts & Susan Joiner & Helen R. Saibil & John Collinge & Jonathan D. F. Wadsworth, 2022. "2.7 Å cryo-EM structure of ex vivo RML prion fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Inbal Maniv & Mahasen Sarji & Anwar Bdarneh & Alona Feldman & Roi Ankawa & Elle Koren & Inbar Magid-Gold & Noa Reis & Despina Soteriou & Shiran Salomon-Zimri & Tali Lavy & Ellina Kesselman & Naama Koi, 2023. "Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Nathalie Kyalu Ngoie Zola & Clémence Balty & Sébastien Pyr dit Ruys & Axelle A. T. Vanparys & Nicolas D. G. Huyghe & Gaëtan Herinckx & Manuel Johanns & Emilien Boyer & Pascal Kienlen-Campard & Mark H., 2023. "Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Peter Kunach & Jaime Vaquer-Alicea & Matthew S. Smith & Jim Monistrol & Robert Hopewell & Luc Moquin & Joseph Therriault & Cecile Tissot & Nesrine Rahmouni & Gassan Massarweh & Jean-Paul Soucy & Marie, 2024. "Cryo-EM structure of Alzheimer’s disease tau filaments with PET ligand MK-6240," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Sukanta Jash & Sayani Banerjee & Shibin Cheng & Bin Wang & Chenxi Qiu & Asami Kondo & Jan Ernerudh & Xiao Zhen Zhou & Kun Ping Lu & Surendra Sharma, 2023. "Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Pijush Chakraborty & Gwladys Rivière & Alina Hebestreit & Alain Ibáñez Opakua & Ina M. Vorberg & Loren B. Andreas & Markus Zweckstetter, 2023. "Acetylation discriminates disease-specific tau deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45429-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.