IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28955-9.html
   My bibliography  Save this article

Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers

Author

Listed:
  • Nikolaos Louros

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Meine Ramakers

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Emiel Michiels

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Katerina Konstantoulea

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Chiara Morelli

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Teresa Garcia

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Nele Moonen

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Sam D’Haeyer

    (VIB Screening Core
    Ghent University)

  • Vera Goossens

    (VIB Screening Core
    Ghent University)

  • Dietmar Rudolf Thal

    (KU Leuven, Leuven Brain Institute
    Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven)

  • Dominique Audenaert

    (VIB Screening Core
    Ghent University)

  • Frederic Rousseau

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

  • Joost Schymkowitz

    (Switch Laboratory, VIB Center for Brain and Disease Research
    KU Leuven)

Abstract

Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression.

Suggested Citation

  • Nikolaos Louros & Meine Ramakers & Emiel Michiels & Katerina Konstantoulea & Chiara Morelli & Teresa Garcia & Nele Moonen & Sam D’Haeyer & Vera Goossens & Dietmar Rudolf Thal & Dominique Audenaert & F, 2022. "Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28955-9
    DOI: 10.1038/s41467-022-28955-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28955-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28955-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikolaos Louros & Gabriele Orlando & Matthias Vleeschouwer & Frederic Rousseau & Joost Schymkowitz, 2020. "Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Falk Liberta & Sarah Loerch & Matthies Rennegarbe & Angelika Schierhorn & Per Westermark & Gunilla T. Westermark & Bouke P. C. Hazenberg & Nikolaus Grigorieff & Marcus Fändrich & Matthias Schmidt, 2019. "Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Emiel Michiels & Kenny Roose & Rodrigo Gallardo & Ladan Khodaparast & Laleh Khodaparast & Rob van der Kant & Maxime Siemons & Bert Houben & Meine Ramakers & Hannah Wilkinson & Patricia Guerreiro & Nik, 2020. "Reverse engineering synthetic antiviral amyloids," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Ladan Khodaparast & Laleh Khodaparast & Rodrigo Gallardo & Nikolaos N. Louros & Emiel Michiels & Reshmi Ramakrishnan & Meine Ramakers & Filip Claes & Lydia Young & Mohammad Shahrooei & Hannah Wilkinso, 2018. "Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    5. Ashok Ganesan & Aleksandra Siekierska & Jacinte Beerten & Marijke Brams & Joost Van Durme & Greet De Baets & Rob Van der Kant & Rodrigo Gallardo & Meine Ramakers & Tobias Langenberg & Hannah Wilkinson, 2016. "Structural hot spots for the solubility of globular proteins," Nature Communications, Nature, vol. 7(1), pages 1-15, April.
    6. Roland Riek & David S. Eisenberg, 2016. "The activities of amyloids from a structural perspective," Nature, Nature, vol. 539(7628), pages 227-235, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Irina Iakovleva & Michael Hall & Melanie Oelker & Linda Sandblad & Intissar Anan & A. Elisabeth Sauer-Eriksson, 2021. "Structural basis for transthyretin amyloid formation in vitreous body of the eye," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Sara Karimi-Farsijani & Peter Benedikt Pfeiffer & Sambhasan Banerjee & Julian Baur & Lukas Kuhn & Niklas Kupfer & Ute Hegenbart & Stefan O. Schönland & Sebastian Wiese & Christian Haupt & Matthias Sch, 2024. "Light chain mutations contribute to defining the fibril morphology in systemic AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Mohammad Peydayesh & Sabrina Kistler & Jiangtao Zhou & Viviane Lutz-Bueno & Francesca Damiani Victorelli & Andréia Bagliotti Meneguin & Larissa Spósito & Tais Maria Bauab & Marlus Chorilli & Raffaele , 2023. "Amyloid-polysaccharide interfacial coacervates as therapeutic materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Maximilian Steinebrei & Julian Baur & Anaviggha Pradhan & Niklas Kupfer & Sebastian Wiese & Ute Hegenbart & Stefan O. Schönland & Matthias Schmidt & Marcus Fändrich, 2023. "Common transthyretin-derived amyloid fibril structures in patients with hereditary ATTR amyloidosis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. San Hadži & Zala Živič & Matic Kovačič & Uroš Zavrtanik & Sarah Haesaerts & Daniel Charlier & Janez Plavec & Alexander N. Volkov & Jurij Lah & Remy Loris, 2024. "Fuzzy recognition by the prokaryotic transcription factor HigA2 from Vibrio cholerae," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Stephen J. Klawa & Michelle Lee & Kyle D. Riker & Tengyue Jian & Qunzhao Wang & Yuan Gao & Margaret L. Daly & Shreeya Bhonge & W. Seth Childers & Tolulope O. Omosun & Anil K. Mehta & David G. Lynn & R, 2024. "Uncovering supramolecular chirality codes for the design of tunable biomaterials," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Sara Karimi-Farsijani & Kartikay Sharma & Marijana Ugrina & Lukas Kuhn & Peter Benedikt Pfeiffer & Christian Haupt & Sebastian Wiese & Ute Hegenbart & Stefan O. Schönland & Nadine Schwierz & Matthias , 2024. "Cryo-EM structure of a lysozyme-derived amyloid fibril from hereditary amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Ahmad Fayad & Hussein Ibrahim & Adrian Ilinca & Sasan Sattarpanah Karganroudi & Mohamad Issa, 2021. "Energy Recovering Using Regenerative Braking in Diesel–Electric Passenger Trains: Economical and Technical Analysis of Fuel Savings and GHG Emission Reductions," Energies, MDPI, vol. 15(1), pages 1-16, December.
    11. Ladan Khodaparast & Laleh Khodaparast & Guiqin Wu & Emiel Michiels & Rodrigo Gallardo & Bert Houben & Teresa Garcia & Matthias Vleeschouwer & Meine Ramakers & Hannah Wilkinson & Ramon Duran-Romaña & J, 2023. "Exploiting the aggregation propensity of beta-lactamases to design inhibitors that induce enzyme misfolding," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Tim Schulte & Antonio Chaves-Sanjuan & Giulia Mazzini & Valentina Speranzini & Francesca Lavatelli & Filippo Ferri & Carlo Palizzotto & Maria Mazza & Paolo Milani & Mario Nuvolone & Anne-Cathrine Vogt, 2022. "Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Kartikay Sharma & Fabian Stockert & Jayakrishna Shenoy & Mélanie Berbon & Muhammed Bilal Abdul-Shukkoor & Birgit Habenstein & Antoine Loquet & Matthias Schmidt & Marcus Fändrich, 2024. "Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28955-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.