IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45168-4.html
   My bibliography  Save this article

N2FXm, a method for joint nuclear and cytoplasmic volume measurements, unravels the osmo-mechanical regulation of nuclear volume in mammalian cells

Author

Listed:
  • Fabrizio A. Pennacchio

    (IFOM ETS—The AIRC Institute of Molecular Oncology
    ETH Zurich)

  • Alessandro Poli

    (IFOM ETS—The AIRC Institute of Molecular Oncology)

  • Francesca Michela Pramotton

    (ETH Zurich)

  • Stefania Lavore

    (IFOM ETS—The AIRC Institute of Molecular Oncology)

  • Ilaria Rancati

    (IFOM ETS—The AIRC Institute of Molecular Oncology)

  • Mario Cinquanta

    (IFOM ETS—The AIRC Institute of Molecular Oncology)

  • Daan Vorselen

    (University of Washington)

  • Elisabetta Prina

    (IFOM ETS—The AIRC Institute of Molecular Oncology)

  • Orso Maria Romano

    (IFOM ETS—The AIRC Institute of Molecular Oncology)

  • Aldo Ferrari

    (ETH Zurich)

  • Matthieu Piel

    (Institut Curie, PSL Research University, CNRS, UMR 144
    Institut Pierre-Gilles de Gennes, PSL Research University)

  • Marco Cosentino Lagomarsino

    (IFOM ETS—The AIRC Institute of Molecular Oncology
    Università degli Studi di Milano, and I.N.F.N.)

  • Paolo Maiuri

    (IFOM ETS—The AIRC Institute of Molecular Oncology
    Università degli Studi di Napoli Federico II)

Abstract

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.

Suggested Citation

  • Fabrizio A. Pennacchio & Alessandro Poli & Francesca Michela Pramotton & Stefania Lavore & Ilaria Rancati & Mario Cinquanta & Daan Vorselen & Elisabetta Prina & Orso Maria Romano & Aldo Ferrari & Matt, 2024. "N2FXm, a method for joint nuclear and cytoplasmic volume measurements, unravels the osmo-mechanical regulation of nuclear volume in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45168-4
    DOI: 10.1038/s41467-024-45168-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45168-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45168-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daan Vorselen & Yifan Wang & Miguel M. Jesus & Pavak K. Shah & Matthew J. Footer & Morgan Huse & Wei Cai & Julie A. Theriot, 2020. "Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Clotilde Cadart & Sylvain Monnier & Jacopo Grilli & Pablo J. Sáez & Nishit Srivastava & Rafaele Attia & Emmanuel Terriac & Buzz Baum & Marco Cosentino-Lagomarsino & Matthieu Piel, 2018. "Size control in mammalian cells involves modulation of both growth rate and cell cycle duration," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    3. Kazunori Kume & Helena Cantwell & Alana Burrell & Paul Nurse, 2019. "Nuclear membrane protein Lem2 regulates nuclear size through membrane flow," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Alessandro Poli & Fabrizio A. Pennacchio & Andrea Ghisleni & Mariagrazia Gennaro & Margaux Lecacheur & Paulina Nastały & Michele Crestani & Francesca M. Pramotton & Fabio Iannelli & Galina Beznusenko , 2023. "PIP4K2B is mechanoresponsive and controls heterochromatin-driven nuclear softening through UHRF1," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Anthony P. Schuller & Matthias Wojtynek & David Mankus & Meltem Tatli & Rafael Kronenberg-Tenga & Saroj G. Regmi & Phat V. Dip & Abigail K. R. Lytton-Jean & Edward J. Brignole & Mary Dasso & Karsten W, 2021. "The cellular environment shapes the nuclear pore complex architecture," Nature, Nature, vol. 598(7882), pages 667-671, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asaf Ashkenazy-Titelman & Mohammad Khaled Atrash & Alon Boocholez & Noa Kinor & Yaron Shav-Tal, 2022. "RNA export through the nuclear pore complex is directional," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Sheung Chun Ng & Abin Biswas & Trevor Huyton & Jürgen Schünemann & Simone Reber & Dirk Görlich, 2023. "Barrier properties of Nup98 FG phases ruled by FG motif identity and inter-FG spacer length," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Klement Stojanovski & Ioana Gheorghe & Peter Lenart & Anne Lanjuin & William B. Mair & Benjamin D. Towbin, 2023. "Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Chengjun Cao & Keyi Wang & Yina Wang & Tong-Bao Liu & Amariliz Rivera & Chaoyang Xue, 2022. "Ubiquitin proteolysis of a CDK-related kinase regulates titan cell formation and virulence in the fungal pathogen Cryptococcus neoformans," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Casper Berger & Maud Dumoux & Thomas Glen & Neville B.-y. Yee & John M. Mitchels & Zuzana Patáková & Michele C. Darrow & James H. Naismith & Michael Grange, 2023. "Plasma FIB milling for the determination of structures in situ," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Klement Stojanovski & Helge Großhans & Benjamin D. Towbin, 2022. "Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Andrea Ghisleni & Mayte Bonilla-Quintana & Michele Crestani & Zeno Lavagnino & Camilla Galli & Padmini Rangamani & Nils C. Gauthier, 2024. "Mechanically induced topological transition of spectrin regulates its distribution in the mammalian cell cortex," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. David Winogradoff & Han-Yi Chou & Christopher Maffeo & Aleksei Aksimentiev, 2022. "Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Tim Lijster & Christoffer Åberg, 2020. "Asymmetry of nanoparticle inheritance upon cell division: Effect on the coefficient of variation," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    11. Alexander H. Settle & Benjamin Y. Winer & Miguel M. Jesus & Lauren Seeman & Zhaoquan Wang & Eric Chan & Yevgeniy Romin & Zhuoning Li & Matthew M. Miele & Ronald C. Hendrickson & Daan Vorselen & Justin, 2024. "β2 integrins impose a mechanical checkpoint on macrophage phagocytosis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45168-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.