IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7717d10.1038_s41586-018-0376-8.html
   My bibliography  Save this article

Topological band engineering of graphene nanoribbons

Author

Listed:
  • Daniel J. Rizzo

    (University of California)

  • Gregory Veber

    (University of California)

  • Ting Cao

    (University of California
    Lawrence Berkeley National Laboratory)

  • Christopher Bronner

    (University of California)

  • Ting Chen

    (University of California)

  • Fangzhou Zhao

    (University of California)

  • Henry Rodriguez

    (University of California)

  • Steven G. Louie

    (University of California
    Lawrence Berkeley National Laboratory)

  • Michael F. Crommie

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory)

  • Felix R. Fischer

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory)

Abstract

Topological insulators are an emerging class of materials that host highly robust in-gap surface or interface states while maintaining an insulating bulk1,2. Most advances in this field have focused on topological insulators and related topological crystalline insulators3 in two dimensions4–6 and three dimensions7–10, but more recent theoretical work has predicted the existence of one-dimensional symmetry-protected topological phases in graphene nanoribbons (GNRs)11. The topological phase of these laterally confined, semiconducting strips of graphene is determined by their width, edge shape and terminating crystallographic unit cell and is characterized by a $${{\mathbb{Z}}}_{2}$$ Z 2 invariant12 (that is, an index of either 0 or 1, indicating two topological classes—similar to quasi-one-dimensional solitonic systems13–16). Interfaces between topologically distinct GNRs characterized by different values of $${{\mathbb{Z}}}_{2}$$ Z 2 are predicted to support half-filled, in-gap localized electronic states that could, in principle, be used as a tool for material engineering11. Here we present the rational design and experimental realization of a topologically engineered GNR superlattice that hosts a one-dimensional array of such states, thus generating otherwise inaccessible electronic structures. This strategy also enables new end states to be engineered directly into the termini of the one-dimensional GNR superlattice. Atomically precise topological GNR superlattices were synthesized from molecular precursors on a gold surface, Au(111), under ultrahigh-vacuum conditions and characterized by low-temperature scanning tunnelling microscopy and spectroscopy. Our experimental results and first-principles calculations reveal that the frontier band structure (the bands bracketing filled and empty states) of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This manifestation of non-trivial one-dimensional topological phases presents a route to band engineering in one-dimensional materials based on precise control of their electronic topology, and is a promising platform for studies of one-dimensional quantum spin physics.

Suggested Citation

  • Daniel J. Rizzo & Gregory Veber & Ting Cao & Christopher Bronner & Ting Chen & Fangzhou Zhao & Henry Rodriguez & Steven G. Louie & Michael F. Crommie & Felix R. Fischer, 2018. "Topological band engineering of graphene nanoribbons," Nature, Nature, vol. 560(7717), pages 204-208, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7717:d:10.1038_s41586-018-0376-8
    DOI: 10.1038/s41586-018-0376-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0376-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0376-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ondrej Dyck & Jawaher Almutlaq & David Lingerfelt & Jacob L. Swett & Mark P. Oxley & Bevin Huang & Andrew R. Lupini & Dirk Englund & Stephen Jesse, 2023. "Direct imaging of electron density with a scanning transmission electron microscope," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Deng-Yuan Li & Zheng-Yang Huang & Li-Xia Kang & Bing-Xin Wang & Jian-Hui Fu & Ying Wang & Guang-Yan Xing & Yan Zhao & Xin-Yu Zhang & Pei-Nian Liu, 2024. "Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Hiroshi Sakaguchi & Takahiro Kojima & Yingbo Cheng & Shunpei Nobusue & Kazuhiro Fukami, 2024. "Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Srilok Srinivasan & Rohit Batra & Duan Luo & Troy Loeffler & Sukriti Manna & Henry Chan & Liuxiang Yang & Wenge Yang & Jianguo Wen & Pierre Darancet & Subramanian K.R.S. Sankaranarayanan, 2022. "Machine learning the metastable phase diagram of covalently bonded carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhiwang Zhang & Penglin Gao & Wenjie Liu & Zichong Yue & Ying Cheng & Xiaojun Liu & Johan Christensen, 2022. "Structured sonic tube with carbon nanotube-like topological edge states," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Qingyang Du & Xuelei Su & Yufeng Liu & Yashi Jiang & Can Li & KaKing Yan & Ricardo Ortiz & Thomas Frederiksen & Shiyong Wang & Ping Yu, 2023. "Orbital-symmetry effects on magnetic exchange in open-shell nanographenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7717:d:10.1038_s41586-018-0376-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.