IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44698-1.html
   My bibliography  Save this article

Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines

Author

Listed:
  • Gisele Nishiguchi

    (St. Jude Children’s Research Hospital)

  • Lauren G. Mascibroda

    (St. Jude Children’s Research Hospital)

  • Sarah M. Young

    (St. Jude Children’s Research Hospital)

  • Elizabeth A. Caine

    (Promega Corporation)

  • Sherif Abdelhamed

    (St. Jude Children’s Research Hospital)

  • Jeffrey J. Kooijman

    (Oncolines B.V.)

  • Darcie J. Miller

    (St. Jude Children’s Research Hospital)

  • Sourav Das

    (St. Jude Children’s Research Hospital)

  • Kevin McGowan

    (St. Jude Children’s Research Hospital)

  • Anand Mayasundari

    (St. Jude Children’s Research Hospital)

  • Zhe Shi

    (St. Jude Children’s Research Hospital)

  • Juan M. Barajas

    (St. Jude Children’s Research Hospital)

  • Ryan Hiltenbrand

    (St. Jude Children’s Research Hospital)

  • Anup Aggarwal

    (St. Jude Children’s Research Hospital)

  • Yunchao Chang

    (St. Jude Children’s Research Hospital)

  • Vibhor Mishra

    (St. Jude Children’s Research Hospital)

  • Shilpa Narina

    (St. Jude Children’s Research Hospital)

  • Melvin Thomas

    (St. Jude Children’s Research Hospital)

  • Allister J. Loughran

    (St. Jude Children’s Research Hospital)

  • Ravi Kalathur

    (St. Jude Children’s Research Hospital)

  • Kaiwen Yu

    (St. Jude Children’s Research Hospital)

  • Suiping Zhou

    (St. Jude Children’s Research Hospital)

  • Xusheng Wang

    (St. Jude Children’s Research Hospital)

  • Anthony A. High

    (St. Jude Children’s Research Hospital)

  • Junmin Peng

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Shondra M. Pruett-Miller

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Danette L. Daniels

    (Promega Corporation)

  • Marjeta Urh

    (Promega Corporation)

  • Anang A. Shelat

    (St. Jude Children’s Research Hospital)

  • Charles G. Mullighan

    (St. Jude Children’s Research Hospital)

  • Kristin M. Riching

    (Promega Corporation)

  • Guido J. R. Zaman

    (Oncolines B.V.)

  • Marcus Fischer

    (St. Jude Children’s Research Hospital)

  • Jeffery M. Klco

    (St. Jude Children’s Research Hospital)

  • Zoran Rankovic

    (St. Jude Children’s Research Hospital)

Abstract

Molecular-glue degraders are small molecules that induce a specific interaction between an E3 ligase and a target protein, resulting in the target proteolysis. The discovery of molecular glue degraders currently relies mostly on screening approaches. Here, we describe screening of a library of cereblon (CRBN) ligands against a panel of patient-derived cancer cell lines, leading to the discovery of SJ7095, a potent degrader of CK1α, IKZF1 and IKZF3 proteins. Through a structure-informed exploration of structure activity relationship (SAR) around this small molecule we develop SJ3149, a selective and potent degrader of CK1α protein in vitro and in vivo. The structure of SJ3149 co-crystalized in complex with CK1α + CRBN + DDB1 provides a rationale for the improved degradation properties of this compound. In a panel of 115 cancer cell lines SJ3149 displays a broad antiproliferative activity profile, which shows statistically significant correlation with MDM2 inhibitor Nutlin-3a. These findings suggest potential utility of selective CK1α degraders for treatment of hematological cancers and solid tumors.

Suggested Citation

  • Gisele Nishiguchi & Lauren G. Mascibroda & Sarah M. Young & Elizabeth A. Caine & Sherif Abdelhamed & Jeffrey J. Kooijman & Darcie J. Miller & Sourav Das & Kevin McGowan & Anand Mayasundari & Zhe Shi &, 2024. "Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44698-1
    DOI: 10.1038/s41467-024-44698-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44698-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44698-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua M. Dempster & Clare Pacini & Sasha Pantel & Fiona M. Behan & Thomas Green & John Krill-Burger & Charlotte M. Beaver & Scott T. Younger & Victor Zhivich & Hanna Najgebauer & Felicity Allen & Ema, 2019. "Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Mary E. Matyskiela & Gang Lu & Takumi Ito & Barbra Pagarigan & Chin-Chun Lu & Karen Miller & Wei Fang & Nai-Yu Wang & Derek Nguyen & Jack Houston & Gilles Carmel & Tam Tran & Mariko Riley & Lyn’Al Nos, 2016. "A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase," Nature, Nature, vol. 535(7611), pages 252-257, July.
    3. Clare Pacini & Joshua M. Dempster & Isabella Boyle & Emanuel Gonçalves & Hanna Najgebauer & Emre Karakoc & Dieudonne Meer & Andrew Barthorpe & Howard Lightfoot & Patricia Jaaks & James M. McFarland & , 2021. "Integrated cross-study datasets of genetic dependencies in cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Jian An & Charles M. Ponthier & Ragna Sack & Jan Seebacher & Michael B. Stadler & Katherine A. Donovan & Eric S. Fischer, 2017. "pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    5. Georg Petzold & Eric S. Fischer & Nicolas H. Thomä, 2016. "Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase," Nature, Nature, vol. 532(7597), pages 127-130, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Yamanaka & Hirotake Furihata & Yuta Yanagihara & Akihito Taya & Takato Nagasaka & Mai Usui & Koya Nagaoka & Yuki Shoya & Kohei Nishino & Shuhei Yoshida & Hidetaka Kosako & Masaru Tanokura & Ta, 2023. "Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Sean A. Misek & Aaron Fultineer & Jeremie Kalfon & Javad Noorbakhsh & Isabella Boyle & Priyanka Roy & Joshua Dempster & Lia Petronio & Katherine Huang & Alham Saadat & Thomas Green & Adam Brown & John, 2024. "Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Alena Kroupova & Valentina A. Spiteri & Zoe J. Rutter & Hirotake Furihata & Darren Darren & Sarath Ramachandran & Sohini Chakraborti & Kevin Haubrich & Julie Pethe & Denzel Gonzales & Andre J. Wijaya , 2024. "Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Ruitong Li & Olaf Klingbeil & Davide Monducci & Michael J. Young & Diego J. Rodriguez & Zaid Bayyat & Joshua M. Dempster & Devishi Kesar & Xiaoping Yang & Mahdi Zamanighomi & Christopher R. Vakoc & Ta, 2022. "Comparative optimization of combinatorial CRISPR screens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zefeng Wang & Shabnam Shaabani & Xiang Gao & Yuen Lam Dora Ng & Valeriia Sapozhnikova & Philipp Mertins & Jan Krönke & Alexander Dömling, 2023. "Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Zhaoxiang Cai & Sofia Apolinário & Ana R. Baião & Clare Pacini & Miguel D. Sousa & Susana Vinga & Roger R. Reddel & Phillip J. Robinson & Mathew J. Garnett & Qing Zhong & Emanuel Gonçalves, 2024. "Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ci Fu & Xiang Zhang & Amanda O. Veri & Kali R. Iyer & Emma Lash & Alice Xue & Huijuan Yan & Nicole M. Revie & Cassandra Wong & Zhen-Yuan Lin & Elizabeth J. Polvi & Sean D. Liston & Benjamin VanderSlui, 2021. "Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Rani Pallavi & Elena Gatti & Tiphanie Durfort & Massimo Stendardo & Roberto Ravasio & Tommaso Leonardi & Paolo Falvo & Bruno Achutti Duso & Simona Punzi & Aobuli Xieraili & Andrea Polazzi & Doriana Ve, 2024. "Caloric restriction leads to druggable LSD1-dependent cancer stem cells expansion," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Olena S. Tokareva & Kunhua Li & Tara L. Travaline & Ty M. Thomson & Jean-Marie Swiecicki & Mahmoud Moussa & Jessica D. Ramirez & Sean Litchman & Gregory L. Verdine & John H. McGee, 2023. "Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Natalia Baran & Alessia Lodi & Yogesh Dhungana & Shelley Herbrich & Meghan Collins & Shannon Sweeney & Renu Pandey & Anna Skwarska & Shraddha Patel & Mathieu Tremblay & Vinitha Mary Kuruvilla & Antoni, 2022. "Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    14. Peter Eirew & Ciara O’Flanagan & Jerome Ting & Sohrab Salehi & Jazmine Brimhall & Beixi Wang & Justina Biele & Teresa Algara & So Ra Lee & Corey Hoang & Damian Yap & Steven McKinney & Cherie Bates & E, 2022. "Accurate determination of CRISPR-mediated gene fitness in transplantable tumours," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Bess P. Rosen & Qing V. Li & Hyein S. Cho & Dingyu Liu & Dapeng Yang & Sarah Graff & Jielin Yan & Renhe Luo & Nipun Verma & Jeyaram R. Damodaran & Hanuman T. Kale & Samuel J. Kaplan & Michael A. Beer , 2024. "Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Peter C. DeWeirdt & Abby V. McGee & Fengyi Zheng & Ifunanya Nwolah & Mudra Hegde & John G. Doench, 2022. "Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. George Rosenberger & Wenxue Li & Mikko Turunen & Jing He & Prem S. Subramaniam & Sergey Pampou & Aaron T. Griffin & Charles Karan & Patrick Kerwin & Diana Murray & Barry Honig & Yansheng Liu & Andrea , 2024. "Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    19. Miguel M. Álvarez & Josep Biayna & Fran Supek, 2022. "TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Meropi Bagka & Hyeonyi Choi & Margaux Héritier & Hanna Schwaemmle & Quentin T. L. Pasquer & Simon M. G. Braun & Leonardo Scapozza & Yibo Wu & Sascha Hoogendoorn, 2023. "Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44698-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.