IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43614-3.html
   My bibliography  Save this article

Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery

Author

Listed:
  • Zefeng Wang

    (University of Groningen, Department of Drug Design)

  • Shabnam Shaabani

    (University of Groningen, Department of Drug Design)

  • Xiang Gao

    (University Hospital Ulm)

  • Yuen Lam Dora Ng

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Valeriia Sapozhnikova

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ)
    Max Delbrück Center for Molecular Medicine)

  • Philipp Mertins

    (Max Delbrück Center for Molecular Medicine
    Berlin Institute of Health)

  • Jan Krönke

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    German Cancer Consortium (DKTK) partner site Berlin and German Cancer Research Center (DKFZ))

  • Alexander Dömling

    (University of Groningen, Department of Drug Design
    Palackӯ University in Olomouc)

Abstract

Thalidomide and its analogs are molecular glues (MGs) that lead to targeted ubiquitination and degradation of key cancer proteins via the cereblon (CRBN) E3 ligase. Here, we develop a direct-to-biology (D2B) approach for accelerated discovery of MGs. In this platform, automated, high throughput, and nano scale synthesis of hundreds of pomalidomide-based MGs was combined with rapid phenotypic screening, enabling an unprecedented fast identification of potent CRBN-acting MGs. The small molecules were further validated by degradation profiling and anti-cancer activity. This revealed E14 as a potent MG degrader targeting IKZF1/3, GSPT1 and 2 with profound effects on a panel of cancer cells. In a more generalized view, integration of automated, nanoscale synthesis with phenotypic assays has the potential to accelerate MGs discovery.

Suggested Citation

  • Zefeng Wang & Shabnam Shaabani & Xiang Gao & Yuen Lam Dora Ng & Valeriia Sapozhnikova & Philipp Mertins & Jan Krönke & Alexander Dömling, 2023. "Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43614-3
    DOI: 10.1038/s41467-023-43614-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43614-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43614-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary E. Matyskiela & Gang Lu & Takumi Ito & Barbra Pagarigan & Chin-Chun Lu & Karen Miller & Wei Fang & Nai-Yu Wang & Derek Nguyen & Jack Houston & Gilles Carmel & Tam Tran & Mariko Riley & Lyn’Al Nos, 2016. "A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase," Nature, Nature, vol. 535(7611), pages 252-257, July.
    2. Jian An & Charles M. Ponthier & Ragna Sack & Jan Seebacher & Michael B. Stadler & Katherine A. Donovan & Eric S. Fischer, 2017. "pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    3. Maximilian Benz & Mijanur R. Molla & Alexander Böser & Alisa Rosenfeld & Pavel A. Levkin, 2019. "Author Correction: Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    4. Shanique Alabi & Saul Jaime-Figueroa & Zhan Yao & Yijun Gao & John Hines & Kusal T. G. Samarasinghe & Lea Vogt & Neal Rosen & Craig M. Crews, 2021. "Mutant-selective degradation by BRAF-targeting PROTACs," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Maximilian Benz & Mijanur R. Molla & Alexander Böser & Alisa Rosenfeld & Pavel A. Levkin, 2019. "Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Yamanaka & Hirotake Furihata & Yuta Yanagihara & Akihito Taya & Takato Nagasaka & Mai Usui & Koya Nagaoka & Yuki Shoya & Kohei Nishino & Shuhei Yoshida & Hidetaka Kosako & Masaru Tanokura & Ta, 2023. "Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Gisele Nishiguchi & Lauren G. Mascibroda & Sarah M. Young & Elizabeth A. Caine & Sherif Abdelhamed & Jeffrey J. Kooijman & Darcie J. Miller & Sourav Das & Kevin McGowan & Anand Mayasundari & Zhe Shi &, 2024. "Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Zemin Zhang & Yuanqing Li & Jie Yang & Jiacheng Li & Xiongqiang Lin & Ting Liu & Shiling Yang & Jin Lin & Shengyu Xue & Jiamin Yu & Cailing Tang & Ziteng Li & Liping Liu & Zhengzheng Ye & Yanan Deng &, 2024. "Dual-site molecular glues for enhancing protein-protein interactions of the CDK12-DDB1 complex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yuki Mori & Yoshino Akizuki & Rikuto Honda & Miyu Takao & Ayaka Tsuchimoto & Sota Hashimoto & Hiroaki Iio & Masakazu Kato & Ai Kaiho-Soma & Yasushi Saeki & Jun Hamazaki & Shigeo Murata & Toshikazu Ush, 2024. "Intrinsic signaling pathways modulate targeted protein degradation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jian Ma & Lei Li & Bohan Ma & Tianjie Liu & Zixi Wang & Qi Ye & Yunhua Peng & Bin Wang & Yule Chen & Shan Xu & Ke Wang & Fabin Dang & Xinyang Wang & Zixuan Zeng & Yanlin Jian & Zhihua Ren & Yizeng Fan, 2024. "MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43614-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.