A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase
Author
Abstract
Suggested Citation
DOI: 10.1038/nature18611
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Satoshi Yamanaka & Hirotake Furihata & Yuta Yanagihara & Akihito Taya & Takato Nagasaka & Mai Usui & Koya Nagaoka & Yuki Shoya & Kohei Nishino & Shuhei Yoshida & Hidetaka Kosako & Masaru Tanokura & Ta, 2023. "Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Jian Ma & Lei Li & Bohan Ma & Tianjie Liu & Zixi Wang & Qi Ye & Yunhua Peng & Bin Wang & Yule Chen & Shan Xu & Ke Wang & Fabin Dang & Xinyang Wang & Zixuan Zeng & Yanlin Jian & Zhihua Ren & Yizeng Fan, 2024. "MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Gisele Nishiguchi & Lauren G. Mascibroda & Sarah M. Young & Elizabeth A. Caine & Sherif Abdelhamed & Jeffrey J. Kooijman & Darcie J. Miller & Sourav Das & Kevin McGowan & Anand Mayasundari & Zhe Shi &, 2024. "Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Alena Kroupova & Valentina A. Spiteri & Zoe J. Rutter & Hirotake Furihata & Darren Darren & Sarath Ramachandran & Sohini Chakraborti & Kevin Haubrich & Julie Pethe & Denzel Gonzales & Andre J. Wijaya , 2024. "Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Zefeng Wang & Shabnam Shaabani & Xiang Gao & Yuen Lam Dora Ng & Valeriia Sapozhnikova & Philipp Mertins & Jan Krönke & Alexander Dömling, 2023. "Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Zemin Zhang & Yuanqing Li & Jie Yang & Jiacheng Li & Xiongqiang Lin & Ting Liu & Shiling Yang & Jin Lin & Shengyu Xue & Jiamin Yu & Cailing Tang & Ziteng Li & Liping Liu & Zhengzheng Ye & Yanan Deng &, 2024. "Dual-site molecular glues for enhancing protein-protein interactions of the CDK12-DDB1 complex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:535:y:2016:i:7611:d:10.1038_nature18611. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.