IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7837d10.1038_s41586-020-2772-0.html
   My bibliography  Save this article

Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion

Author

Listed:
  • Donald J. Benton

    (Francis Crick Institute)

  • Antoni G. Wrobel

    (Francis Crick Institute)

  • Pengqi Xu

    (Sun Yat-sen University
    Francis Crick Institute)

  • Chloë Roustan

    (Francis Crick Institute)

  • Stephen R. Martin

    (Francis Crick Institute)

  • Peter B. Rosenthal

    (Francis Crick Institute)

  • John J. Skehel

    (Francis Crick Institute)

  • Steven J. Gamblin

    (Francis Crick Institute)

Abstract

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1–4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5–7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8–10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2′), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413–15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2′) cleavage site.

Suggested Citation

  • Donald J. Benton & Antoni G. Wrobel & Pengqi Xu & Chloë Roustan & Stephen R. Martin & Peter B. Rosenthal & John J. Skehel & Steven J. Gamblin, 2020. "Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion," Nature, Nature, vol. 588(7837), pages 327-330, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7837:d:10.1038_s41586-020-2772-0
    DOI: 10.1038/s41586-020-2772-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2772-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2772-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengjun Wang & Wei Ran & Lingyu Sun & Qingchi Fan & Yuanqi Zhao & Bowen Wang & Jinghong Yang & Yuqi He & Ying Wu & Yuanyuan Wang & Luoyi Chen & Arpaporn Chuchuay & Yuyu You & Xinhai Zhu & Xiaojuan Wa, 2024. "Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Qi Zhang & Weichun Tang & Eduardo Stancanelli & Eunkyung Jung & Zulfeqhar Syed & Vijayakanth Pagadala & Layla Saidi & Catherine Z. Chen & Peng Gao & Miao Xu & Ivan Pavlinov & Bing Li & Wenwei Huang & , 2023. "Host heparan sulfate promotes ACE2 super-cluster assembly and enhances SARS-CoV-2-associated syncytium formation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Gang Ye & Bin Liu & Fang Li, 2022. "Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Yifan Wang & Caixuan Liu & Chao Zhang & Yanxing Wang & Qin Hong & Shiqi Xu & Zuyang Li & Yong Yang & Zhong Huang & Yao Cong, 2022. "Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Xuanming Guo & Jianli Cao & Jian-Piao Cai & Jiayan Wu & Jiangang Huang & Pallavi Asthana & Sheung Kin Ken Wong & Zi-Wei Ye & Susma Gurung & Yijing Zhang & Sheng Wang & Zening Wang & Xin Ge & Hiu Yee K, 2022. "Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Sun Jin Kim & Zhong Yao & Morgan C. Marsh & Debra M. Eckert & Michael S. Kay & Anna Lyakisheva & Maria Pasic & Aiyush Bansal & Chaim Birnboim & Prabhat Jha & Yannick Galipeau & Marc-André Langlois & J, 2022. "Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Haisheng Yu & Banghui Liu & Yudi Zhang & Xijie Gao & Qian Wang & Haitao Xiang & Xiaofang Peng & Caixia Xie & Yaping Wang & Peiyu Hu & Jingrong Shi & Quan Shi & Pingqian Zheng & Chengqian Feng & Guofan, 2023. "Somatically hypermutated antibodies isolated from SARS-CoV-2 Delta infected patients cross-neutralize heterologous variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Zhennan Zhao & Jingya Zhou & Mingxiong Tian & Min Huang & Sheng Liu & Yufeng Xie & Pu Han & Chongzhi Bai & Pengcheng Han & Anqi Zheng & Lutang Fu & Yuanzhu Gao & Qi Peng & Ying Li & Yan Chai & Zengyua, 2022. "Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Antoni G. Wrobel & Donald J. Benton & Chloë Roustan & Annabel Borg & Saira Hussain & Stephen R. Martin & Peter B. Rosenthal & John J. Skehel & Steven J. Gamblin, 2022. "Evolution of the SARS-CoV-2 spike protein in the human host," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Zhennan Zhao & Yufeng Xie & Bin Bai & Chunliang Luo & Jingya Zhou & Weiwei Li & Yumin Meng & Linjie Li & Dedong Li & Xiaomei Li & Xiaoxiong Li & Xiaoyun Wang & Junqing Sun & Zepeng Xu & Yeping Sun & W, 2023. "Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Naoko Iwata-Yoshikawa & Masatoshi Kakizaki & Nozomi Shiwa-Sudo & Takashi Okura & Maino Tahara & Shuetsu Fukushi & Ken Maeda & Miyuki Kawase & Hideki Asanuma & Yuriko Tomita & Ikuyo Takayama & Shutoku , 2022. "Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Katherine U. Gaynor & Marina Vaysburd & Maximilian A. J. Harman & Anna Albecka & Phillip Jeffrey & Paul Beswick & Guido Papa & Liuhong Chen & Donna Mallery & Brian McGuinness & Katerine Rietschoten & , 2023. "Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Alexander J. Pak & Alvin Yu & Zunlong Ke & John A. G. Briggs & Gregory A. Voth, 2022. "Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Rong Zhu & Daniel Canena & Mateusz Sikora & Miriam Klausberger & Hannah Seferovic & Ahmad Reza Mehdipour & Lisa Hain & Elisabeth Laurent & Vanessa Monteil & Gerald Wirnsberger & Ralph Wieneke & Robert, 2022. "Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Ilyas Khan & Sunan Li & Lihong Tao & Chong Wang & Bowei Ye & Huiyu Li & Xiaoyang Liu & Iqbal Ahmad & Wenqiang Su & Gongxun Zhong & Zhiyuan Wen & Jinliang Wang & Rong-Hong Hua & Ao Ma & Jie Liang & Xia, 2024. "Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Oskar Staufer & Kapil Gupta & Jochen Estebano Hernandez Bücher & Fabian Kohler & Christian Sigl & Gunjita Singh & Kate Vasileiou & Ana Yagüe Relimpio & Meline Macher & Sebastian Fabritz & Hendrik Diet, 2022. "Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Egon A. Ozer & Lacy M. Simons & Olubusuyi M. Adewumi & Adeola A. Fowotade & Ewean C. Omoruyi & Johnson A. Adeniji & Oluseyi A. Olayinka & Taylor J. Dean & Janet Zayas & Pavan P. Bhimalli & Michelle K., 2022. "Multiple expansions of globally uncommon SARS-CoV-2 lineages in Nigeria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7837:d:10.1038_s41586-020-2772-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.