IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-43012-9.html
   My bibliography  Save this article

Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs

Author

Listed:
  • Jessen V. Bredeson

    (University of California
    DOE-Joint Genome Institute)

  • Austin B. Mudd

    (University of California)

  • Sofia Medina-Ruiz

    (University of California)

  • Therese Mitros

    (University of California)

  • Owen Kabnick Smith

    (Stanford University School of Medicine)

  • Kelly E. Miller

    (University of California)

  • Jessica B. Lyons

    (University of California)

  • Sanjit S. Batra

    (University of California Berkeley)

  • Joseph Park

    (University of California)

  • Kodiak C. Berkoff

    (University of California)

  • Christopher Plott

    (HudsonAlpha Institute for Biotechnology)

  • Jane Grimwood

    (HudsonAlpha Institute for Biotechnology)

  • Jeremy Schmutz

    (HudsonAlpha Institute for Biotechnology)

  • Guadalupe Aguirre-Figueroa

    (Stanford University School of Medicine)

  • Mustafa K. Khokha

    (Yale University School of Medicine)

  • Maura Lane

    (Yale University School of Medicine)

  • Isabelle Philipp

    (University of California)

  • Mara Laslo

    (Harvard University)

  • James Hanken

    (Harvard University)

  • Gwenneg Kerdivel

    (UMR 7221 CNRS, Muséum National d’Histoire Naturelle)

  • Nicolas Buisine

    (UMR 7221 CNRS, Muséum National d’Histoire Naturelle)

  • Laurent M. Sachs

    (UMR 7221 CNRS, Muséum National d’Histoire Naturelle)

  • Daniel R. Buchholz

    (University of Cincinnati)

  • Taejoon Kwon

    (Ulsan National Institute of Science and Technology
    Institute for Basic Science (IBS))

  • Heidi Smith-Parker

    (University of Texas)

  • Marcos Gridi-Papp

    (University of the Pacific)

  • Michael J. Ryan

    (University of Texas)

  • Robert D. Denton

    (University of Connecticut)

  • John H. Malone

    (University of Connecticut)

  • John B. Wallingford

    (The University of Texas at Austin)

  • Aaron F. Straight

    (Stanford University School of Medicine)

  • Rebecca Heald

    (University of California)

  • Dirk Hockemeyer

    (University of California
    University of California
    Chan-Zuckerberg BioHub)

  • Richard M. Harland

    (University of California)

  • Daniel S. Rokhsar

    (University of California
    DOE-Joint Genome Institute
    University of California
    Chan-Zuckerberg BioHub)

Abstract

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.

Suggested Citation

  • Jessen V. Bredeson & Austin B. Mudd & Sofia Medina-Ruiz & Therese Mitros & Owen Kabnick Smith & Kelly E. Miller & Jessica B. Lyons & Sanjit S. Batra & Joseph Park & Kodiak C. Berkoff & Christopher Plo, 2024. "Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-43012-9
    DOI: 10.1038/s41467-023-43012-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43012-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43012-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Mascher & Heidrun Gundlach & Axel Himmelbach & Sebastian Beier & Sven O. Twardziok & Thomas Wicker & Volodymyr Radchuk & Christoph Dockter & Pete E. Hedley & Joanne Russell & Micha Bayer & Luke, 2017. "A chromosome conformation capture ordered sequence of the barley genome," Nature, Nature, vol. 544(7651), pages 427-433, April.
    2. Sergej Nowoshilow & Siegfried Schloissnig & Ji-Feng Fei & Andreas Dahl & Andy W. C. Pang & Martin Pippel & Sylke Winkler & Alex R. Hastie & George Young & Juliana G. Roscito & Francisco Falcon & Dunja, 2018. "Author Correction: The axolotl genome and the evolution of key tissue formation regulators," Nature, Nature, vol. 559(7712), pages 2-2, July.
    3. Zhijun Duan & Mirela Andronescu & Kevin Schutz & Sean McIlwain & Yoo Jung Kim & Choli Lee & Jay Shendure & Stanley Fields & C. Anthony Blau & William S. Noble, 2010. "A three-dimensional model of the yeast genome," Nature, Nature, vol. 465(7296), pages 363-367, May.
    4. Andreea Dréau & Vrinda Venu & Elena Avdievich & Ludmila Gaspar & Felicity C. Jones, 2019. "Genome-wide recombination map construction from single individuals using linked-read sequencing," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Ross A. Alford & Philip M. Dixon & Joseph H. K. Pechmann, 2001. "Global amphibian population declines," Nature, Nature, vol. 412(6846), pages 499-500, August.
    6. Tim J. Stevens & David Lando & Srinjan Basu & Liam P. Atkinson & Yang Cao & Steven F. Lee & Martin Leeb & Kai J. Wohlfahrt & Wayne Boucher & Aoife O’Shaughnessy-Kirwan & Julie Cramard & Andre J. Faure, 2017. "3D structures of individual mammalian genomes studied by single-cell Hi-C," Nature, Nature, vol. 544(7648), pages 59-64, April.
    7. Andrew R. Blaustein & Andy Dobson, 2006. "A message from the frogs," Nature, Nature, vol. 439(7073), pages 143-144, January.
    8. Brian Leung & Anna L. Hargreaves & Dan A. Greenberg & Brian McGill & Maria Dornelas & Robin Freeman, 2020. "Clustered versus catastrophic global vertebrate declines," Nature, Nature, vol. 588(7837), pages 267-271, December.
    9. Sergej Nowoshilow & Siegfried Schloissnig & Ji-Feng Fei & Andreas Dahl & Andy W. C. Pang & Martin Pippel & Sylke Winkler & Alex R. Hastie & George Young & Juliana G. Roscito & Francisco Falcon & Dunja, 2018. "The axolotl genome and the evolution of key tissue formation regulators," Nature, Nature, vol. 554(7690), pages 50-55, February.
    10. Jun Li & Haiyan Yu & Wenxia Wang & Chao Fu & Wei Zhang & Fengming Han & Hua Wu, 2019. "Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    11. Adam M. Session & Yoshinobu Uno & Taejoon Kwon & Jarrod A. Chapman & Atsushi Toyoda & Shuji Takahashi & Akimasa Fukui & Akira Hikosaka & Atsushi Suzuki & Mariko Kondo & Simon J. van Heeringen & Ian Qu, 2016. "Genome evolution in the allotetraploid frog Xenopus laevis," Nature, Nature, vol. 538(7625), pages 336-343, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Liu & Jessica Ewald & Zhiqiang Pang & Elena Legrand & Yeon Seon Jeon & Jonathan Sangiovanni & Orcun Hacariz & Guangyan Zhou & Jessica A. Head & Niladri Basu & Jianguo Xia, 2023. "ExpressAnalyst: A unified platform for RNA-sequencing analysis in non-model species," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Cassie L. Kemmler & Jana Smolikova & Hannah R. Moran & Brandon J. Mannion & Dunja Knapp & Fabian Lim & Anna Czarkwiani & Viviana Hermosilla Aguayo & Vincent Rapp & Olivia E. Fitch & Seraina Bötschi & , 2023. "Conserved enhancers control notochord expression of vertebrate Brachyury," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Yenny Villuendas-Rey & José L. Velázquez-Rodríguez & Mariana Dayanara Alanis-Tamez & Marco-Antonio Moreno-Ibarra & Cornelio Yáñez-Márquez, 2021. "Mexican Axolotl Optimization: A Novel Bioinspired Heuristic," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    5. Fang Ye & Guodong Zhang & Weigao E. & Haide Chen & Chengxuan Yu & Lei Yang & Yuting Fu & Jiaqi Li & Sulei Fu & Zhongyi Sun & Lijiang Fei & Qile Guo & Jingjing Wang & Yanyu Xiao & Xinru Wang & Peijing , 2022. "Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    7. Adriana Arneson & Amin Haghani & Michael J. Thompson & Matteo Pellegrini & Soo Bin Kwon & Ha Vu & Emily Maciejewski & Mingjia Yao & Caesar Z. Li & Ake T. Lu & Marco Morselli & Liudmilla Rubbi & Bret B, 2022. "A mammalian methylation array for profiling methylation levels at conserved sequences," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Camilla S. Colding-Christensen & Ellen S. Kakulidis & Javier Arroyo-Gomez & Ivo A. Hendriks & Connor Arkinson & Zita Fábián & Agnieszka Gambus & Niels Mailand & Julien P. Duxin & Michael L. Nielsen, 2023. "Profiling ubiquitin signalling with UBIMAX reveals DNA damage- and SCFβ-Trcp1-dependent ubiquitylation of the actin-organizing protein Dbn1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Guifang Lin & Hui Chen & Bin Tian & Sunish K. Sehgal & Lovepreet Singh & Jingzhong Xie & Nidhi Rawat & Philomin Juliana & Narinder Singh & Sandesh Shrestha & Duane L. Wilson & Hannah Shult & Hyeonju L, 2022. "Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Yi Li & James Lee & Lu Bai, 2024. "DNA methylation-based high-resolution mapping of long-distance chromosomal interactions in nucleosome-depleted regions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    13. Giorgia Capasso & Giorgia Santini & Mariagioia Petraretti & Sergio Esposito & Simone Landi, 2021. "Wild and Traditional Barley Genomic Resources as a Tool for Abiotic Stress Tolerance and Biotic Relations," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
    14. Olga Afanasenko & Irina Rozanova & Anastasiia Gofman & Nina Lashina & Fluturë Novakazi & Nina Mironenko & Olga Baranova & Alexandr Zubkovich, 2022. "Validation of Molecular Markers of Barley Net Blotch Resistance Loci on Chromosome 3H for Marker-Assisted Selection," Agriculture, MDPI, vol. 12(4), pages 1-20, March.
    15. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Millard, Joe, 2023. "Coining one currency for nature," OSF Preprints j7phu, Center for Open Science.
    17. Seungsoo Hahn & Dongsup Kim, 2015. "Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    18. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    19. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    20. Zhang Qi & Xu Zheng & Lai Yutong, 2021. "An Empirical Bayes approach for the identification of long-range chromosomal interaction from Hi-C data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(1), pages 1-15, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-43012-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.