IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43627-y.html
   My bibliography  Save this article

Resting-state global brain activity affects early β-amyloid accumulation in default mode network

Author

Listed:
  • Feng Han

    (The Pennsylvania State University)

  • Xufu Liu

    (The Pennsylvania State University)

  • Richard B. Mailman

    (Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center)

  • Xuemei Huang

    (Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center
    Pennsylvania State University and Milton S. Hershey Medical Center
    The Pennsylvania State University)

  • Xiao Liu

    (The Pennsylvania State University
    The Pennsylvania State University)

Abstract

It remains unclear why β-amyloid (Aβ) plaque, a hallmark pathology of Alzheimer’s disease (AD), first accumulates cortically in the default mode network (DMN), years before AD diagnosis. Resting-state low-frequency (

Suggested Citation

  • Feng Han & Xufu Liu & Richard B. Mailman & Xuemei Huang & Xiao Liu, 2023. "Resting-state global brain activity affects early β-amyloid accumulation in default mode network," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43627-y
    DOI: 10.1038/s41467-023-43627-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43627-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43627-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles J. Kowalski, 1972. "On the Effects of Non‐Normality on the Distribution of the Sample Product‐Moment Correlation Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(1), pages 1-12, March.
    2. Mathias Jucker & Lary C. Walker, 2013. "Self-propagation of pathogenic protein aggregates in neurodegenerative diseases," Nature, Nature, vol. 501(7465), pages 45-51, September.
    3. Xiao Liu & Jacco A. de Zwart & Marieke L. Schölvinck & Catie Chang & Frank Q. Ye & David A. Leopold & Jeff H. Duyn, 2018. "Subcortical evidence for a contribution of arousal to fMRI studies of brain activity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Richard J. Perrin & Anne M. Fagan & David M. Holtzman, 2009. "Multimodal techniques for diagnosis and prognosis of Alzheimer's disease," Nature, Nature, vol. 461(7266), pages 916-922, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tianyi & Shi, Xiupeng & Wong, Yiik Diew, 2021. "A lane-changing risk profile analysis method based on time-series clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Ye, Xiong-Fei & Zhang, Yi & Harutoshi, Ogai & Kim, Chul-Woo, 2019. "Hierarchical probability and risk assessment for K-out-of-N system in hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 242-260.
    3. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yalin Yu & Yue Qiu & Gen Li & Kaiwei Zhang & Binshi Bo & Mengchao Pei & Jingjing Ye & Garth J. Thompson & Jing Cang & Fang Fang & Yanqiu Feng & Xiaojie Duan & Chuanjun Tong & Zhifeng Liang, 2023. "Sleep fMRI with simultaneous electrophysiology at 9.4 T in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Beverly Setzer & Nina E. Fultz & Daniel E. P. Gomez & Stephanie D. Williams & Giorgio Bonmassar & Jonathan R. Polimeni & Laura D. Lewis, 2022. "A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Stacy A. Hussong & Andy Q. Banh & Candice E. Skike & Angela O. Dorigatti & Stephen F. Hernandez & Matthew J. Hart & Beatriz Ferran & Haneen Makhlouf & Maria Gaczynska & Pawel A. Osmulski & Salome A. M, 2023. "Soluble pathogenic tau enters brain vascular endothelial cells and drives cellular senescence and brain microvascular dysfunction in a mouse model of tauopathy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Matheus Pereira Libório & Alexandre Magno Alves Diniz & Hamidreza Rabiei-Dastjerd & Oseias da Silva Martinuci & Carlos Augusto Paiva da Silva Martins & Petr Iakovlevitch Ekel, 2023. "A Decision Framework for Identifying Methods to Construct Stable Composite Indicators That Capture the Concept of Multidimensional Social Phenomena: The Case of Social Exclusion," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
    9. Luengo, Elena Almaraz & Olivares, Bittor Alaña & Villalba, Luis Javier García & Hernandez-Castro, Julio, 2023. "Further analysis of the statistical independence of the NIST SP 800-22 randomness tests," Applied Mathematics and Computation, Elsevier, vol. 459(C).
    10. Hannah Drew Rickner & Lulu Jiang & Rui Hong & Nicholas K. O’Neill & Chromewell A. Mojica & Benjamin J. Snyder & Lushuang Zhang & Dipan Shaw & Maria Medalla & Benjamin Wolozin & Christine S. Cheng, 2022. "Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    11. Junya Wu, 2024. "The Role of Affordability on the Adoption of Residential Point-of-Use Drinking Water Filtering Systems in China," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    12. Mohammad Arif & Soumita Sengupta, 2021. "Nexus between population density and novel coronavirus (COVID-19) pandemic in the south Indian states: A geo-statistical approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10246-10274, July.
    13. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    14. Christine Rother & Ruth E. Uhlmann & Stephan A. Müller & Juliane Schelle & Angelos Skodras & Ulrike Obermüller & Lisa M. Häsler & Marius Lambert & Frank Baumann & Ying Xu & Carina Bergmann & Giulia Sa, 2022. "Experimental evidence for temporal uncoupling of brain Aβ deposition and neurodegenerative sequelae," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Benedikt Frieg & Mookyoung Han & Karin Giller & Christian Dienemann & Dietmar Riedel & Stefan Becker & Loren B. Andreas & Christian Griesinger & Gunnar F. Schröder, 2024. "Cryo-EM structures of lipidic fibrils of amyloid-β (1-40)," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Rossi, Paula & Kagatsume, Masaru, 2010. "Economic Impact of Japan's Food and Agricultural FDI on Worldwide Recipient Countries," Conference papers 332018, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Chuanjun Tong & Cirong Liu & Kaiwei Zhang & Binshi Bo & Ying Xia & Hao Yang & Yanqiu Feng & Zhifeng Liang, 2022. "Multimodal analysis demonstrating the shaping of functional gradients in the marmoset brain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43627-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.