IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43602-7.html
   My bibliography  Save this article

Essential transcription factors for induced neuron differentiation

Author

Listed:
  • Congyi Lu

    (New York Genome Center
    New York University)

  • Görkem Garipler

    (New York University)

  • Chao Dai

    (New York Genome Center
    New York University)

  • Timothy Roush

    (New York Genome Center
    New York University)

  • Jose Salome-Correa

    (New York Genome Center
    New York University)

  • Alex Martin

    (New York Genome Center
    New York University)

  • Noa Liscovitch-Brauer

    (New York Genome Center
    New York University)

  • Esteban O. Mazzoni

    (New York University
    NYU Grossman School of Medicine)

  • Neville E. Sanjana

    (New York Genome Center
    New York University)

Abstract

Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.

Suggested Citation

  • Congyi Lu & Görkem Garipler & Chao Dai & Timothy Roush & Jose Salome-Correa & Alex Martin & Noa Liscovitch-Brauer & Esteban O. Mazzoni & Neville E. Sanjana, 2023. "Essential transcription factors for induced neuron differentiation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43602-7
    DOI: 10.1038/s41467-023-43602-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43602-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43602-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silvia Velasco & Amanda J. Kedaigle & Sean K. Simmons & Allison Nash & Marina Rocha & Giorgia Quadrato & Bruna Paulsen & Lan Nguyen & Xian Adiconis & Aviv Regev & Joshua Z. Levin & Paola Arlotta, 2019. "Individual brain organoids reproducibly form cell diversity of the human cerebral cortex," Nature, Nature, vol. 570(7762), pages 523-527, June.
    2. Jessica T. Cortez & Elena Montauti & Eric Shifrut & Jovylyn Gatchalian & Yusi Zhang & Oren Shaked & Yuanming Xu & Theodore L. Roth & Dimitre R. Simeonov & Yana Zhang & Siqi Chen & Zhongmei Li & Jonath, 2020. "CRISPR screen in regulatory T cells reveals modulators of Foxp3," Nature, Nature, vol. 582(7812), pages 416-420, June.
    3. Florian T. Merkle & Sulagna Ghosh & Nolan Kamitaki & Jana Mitchell & Yishai Avior & Curtis Mello & Seva Kashin & Shila Mekhoubad & Dusko Ilic & Maura Charlton & Genevieve Saphier & Robert E. Handsaker, 2017. "Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations," Nature, Nature, vol. 545(7653), pages 229-233, May.
    4. Bruna Paulsen & Silvia Velasco & Amanda J. Kedaigle & Martina Pigoni & Giorgia Quadrato & Anthony J. Deo & Xian Adiconis & Ana Uzquiano & Rafaela Sartore & Sung Min Yang & Sean K. Simmons & Panagiotis, 2022. "Autism genes converge on asynchronous development of shared neuron classes," Nature, Nature, vol. 602(7896), pages 268-273, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhang & Gongcheng Hu & Yuli Lu & Huawei Ren & Yin Huang & Yulin Wen & Binrui Ji & Diyang Wang & Haidong Wang & Huisheng Liu & Ning Ma & Lingling Zhang & Guangjin Pan & Yibo Qu & Hua Wang & Wei Zha, 2024. "CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Rebecca Sebastian & Kang Jin & Narciso Pavon & Ruby Bansal & Andrew Potter & Yoonjae Song & Juliana Babu & Rafael Gabriel & Yubing Sun & Bruce Aronow & ChangHui Pak, 2023. "Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    4. Ju-Chan Park & Yun-Jeong Kim & Gue-Ho Hwang & Chan Young Kang & Sangsu Bae & Hyuk-Jin Cha, 2024. "Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Arpiar Saunders & Kee Wui Huang & Cassandra Vondrak & Christina Hughes & Karina Smolyar & Harsha Sen & Adrienne C. Philson & James Nemesh & Alec Wysoker & Seva Kashin & Bernardo L. Sabatini & Steven A, 2022. "Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Mattia Zaghi & Federica Banfi & Luca Massimino & Monica Volpin & Edoardo Bellini & Simone Brusco & Ivan Merelli & Cristiana Barone & Michela Bruni & Linda Bossini & Luigi Antonio Lamparelli & Laura Pi, 2023. "Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Yueqi Wang & Simone Chiola & Guang Yang & Chad Russell & Celeste J. Armstrong & Yuanyuan Wu & Jay Spampanato & Paisley Tarboton & H. M. Arif Ullah & Nicolas U. Edgar & Amelia N. Chang & David A. Harmi, 2022. "Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    9. Carolina Gracia-Diaz & Yijing Zhou & Qian Yang & Reza Maroofian & Paula Espana-Bonilla & Chul-Hwan Lee & Shuo Zhang & Natàlia Padilla & Raquel Fueyo & Elisa A. Waxman & Sunyimeng Lei & Garrett Otrimsk, 2023. "Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Sulagna Ghosh & Ralda Nehme & Lindy E. Barrett, 2022. "Greater genetic diversity is needed in human pluripotent stem cell models," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Francesco Antonica & Lucia Santomaso & Davide Pernici & Linda Petrucci & Giuseppe Aiello & Alessandro Cutarelli & Luciano Conti & Alessandro Romanel & Evelina Miele & Toma Tebaldi & Luca Tiberi, 2022. "A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Sandor Spisak & David Chen & Pornlada Likasitwatanakul & Paul Doan & Zhixin Li & Pratyusha Bala & Laura Vizkeleti & Viktoria Tisza & Pushpamali Silva & Marios Giannakis & Brian Wolpin & Jun Qi & Nilay, 2024. "Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Arianna Moiani & Gil Letort & Sabrina Lizot & Anne Chalumeau & Chloe Foray & Tristan Felix & Diane Clerre & Sonal Temburni-Blake & Patrick Hong & Sophie Leduc & Noemie Pinard & Alan Marechal & Eduardo, 2024. "Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Chen Cheng & Gang Wang & Yuqing Zhu & Hangdi Wu & Li Zhang & Zhihong Liu & Yuanhua Huang & Jin Zhang, 2024. "Multiplexed bulk and single-cell RNA-seq hybrid enables cost-efficient disease modeling with chimeric organoids," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Maisumu Gulimiheranmu & Shuang Li & Junmei Zhou, 2021. "In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids," IJERPH, MDPI, vol. 18(23), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43602-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.