IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48282-5.html
   My bibliography  Save this article

Multiplexed bulk and single-cell RNA-seq hybrid enables cost-efficient disease modeling with chimeric organoids

Author

Listed:
  • Chen Cheng

    (Hong Kong Science and Technology Park
    Zhejiang University School of Medicine
    The University of Hong Kong, Pokfulam
    Zhejiang University)

  • Gang Wang

    (Zhejiang University School of Medicine
    Nanjing University School of Medicine
    Zhejiang University School of Medicine)

  • Yuqing Zhu

    (Zhejiang University
    Anhui University)

  • Hangdi Wu

    (Nanjing University School of Medicine
    Zhejiang University School of Medicine)

  • Li Zhang

    (Zhejiang University)

  • Zhihong Liu

    (Zhejiang University School of Medicine
    Nanjing University School of Medicine
    Zhejiang University School of Medicine)

  • Yuanhua Huang

    (Hong Kong Science and Technology Park
    The University of Hong Kong, Pokfulam
    The University of Hong Kong, Pokfulam)

  • Jin Zhang

    (Zhejiang University School of Medicine
    Zhejiang University
    Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province)

Abstract

Disease modeling with isogenic Induced Pluripotent Stem Cell (iPSC)-differentiated organoids serves as a powerful technique for studying disease mechanisms. Multiplexed coculture is crucial to mitigate batch effects when studying the genetic effects of disease-causing variants in differentiated iPSCs or organoids, and demultiplexing at the single-cell level can be conveniently achieved by assessing natural genetic barcodes. Here, to enable cost-efficient time-series experimental designs via multiplexed bulk and single-cell RNA-seq of hybrids, we introduce a computational method in our Vireo Suite, Vireo-bulk, to effectively deconvolve pooled bulk RNA-seq data by genotype reference, and thereby quantify donor abundance over the course of differentiation and identify differentially expressed genes among donors. Furthermore, with multiplexed scRNA-seq and bulk RNA-seq, we demonstrate the usefulness and necessity of a pooled design to reveal donor iPSC line heterogeneity during macrophage cell differentiation and to model rare WT1 mutation-driven kidney disease with chimeric organoids. Our work provides an experimental and analytic pipeline for dissecting disease mechanisms with chimeric organoids.

Suggested Citation

  • Chen Cheng & Gang Wang & Yuqing Zhu & Hangdi Wu & Li Zhang & Zhihong Liu & Yuanhua Huang & Jin Zhang, 2024. "Multiplexed bulk and single-cell RNA-seq hybrid enables cost-efficient disease modeling with chimeric organoids," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48282-5
    DOI: 10.1038/s41467-024-48282-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48282-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48282-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silvia Velasco & Amanda J. Kedaigle & Sean K. Simmons & Allison Nash & Marina Rocha & Giorgia Quadrato & Bruna Paulsen & Lan Nguyen & Xian Adiconis & Aviv Regev & Joshua Z. Levin & Paola Arlotta, 2019. "Individual brain organoids reproducibly form cell diversity of the human cerebral cortex," Nature, Nature, vol. 570(7762), pages 523-527, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Arpiar Saunders & Kee Wui Huang & Cassandra Vondrak & Christina Hughes & Karina Smolyar & Harsha Sen & Adrienne C. Philson & James Nemesh & Alec Wysoker & Seva Kashin & Bernardo L. Sabatini & Steven A, 2022. "Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Yueqi Wang & Simone Chiola & Guang Yang & Chad Russell & Celeste J. Armstrong & Yuanyuan Wu & Jay Spampanato & Paisley Tarboton & H. M. Arif Ullah & Nicolas U. Edgar & Amelia N. Chang & David A. Harmi, 2022. "Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    5. Francesco Antonica & Lucia Santomaso & Davide Pernici & Linda Petrucci & Giuseppe Aiello & Alessandro Cutarelli & Luciano Conti & Alessandro Romanel & Evelina Miele & Toma Tebaldi & Luca Tiberi, 2022. "A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Rebecca Sebastian & Kang Jin & Narciso Pavon & Ruby Bansal & Andrew Potter & Yoonjae Song & Juliana Babu & Rafael Gabriel & Yubing Sun & Bruce Aronow & ChangHui Pak, 2023. "Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Maisumu Gulimiheranmu & Shuang Li & Junmei Zhou, 2021. "In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
    8. Congyi Lu & Görkem Garipler & Chao Dai & Timothy Roush & Jose Salome-Correa & Alex Martin & Noa Liscovitch-Brauer & Esteban O. Mazzoni & Neville E. Sanjana, 2023. "Essential transcription factors for induced neuron differentiation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48282-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.