IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43296-x.html
   My bibliography  Save this article

Metagenomic profiles of archaea and bacteria within thermal and geochemical gradients of the Guaymas Basin deep subsurface

Author

Listed:
  • Paraskevi Mara

    (Woods Hole Oceanographic Institution)

  • David Geller-McGrath

    (Woods Hole Oceanographic Institution)

  • Virginia Edgcomb

    (Woods Hole Oceanographic Institution)

  • David Beaudoin

    (Woods Hole Oceanographic Institution)

  • Yuki Morono

    (Institute for Extra-cutting-edge Science and Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe)

  • Andreas Teske

    (University of North Carolina at Chapel Hill)

Abstract

Previous studies of microbial communities in subseafloor sediments reported that microbial abundance and diversity decrease with sediment depth and age, and microbes dominating at depth tend to be a subset of the local seafloor community. However, the existence of geographically widespread, subsurface-adapted specialists is also possible. Here, we use metagenomic and metatranscriptomic analyses of the hydrothermally heated, sediment layers of Guaymas Basin (Gulf of California, Mexico) to examine the distribution and activity patterns of bacteria and archaea along thermal, geochemical and cell count gradients. We find that the composition and distribution of metagenome-assembled genomes (MAGs), dominated by numerous lineages of Chloroflexota and Thermoproteota, correlate with biogeochemical parameters as long as temperatures remain moderate, but downcore increasing temperatures beyond ca. 45 ºC override other factors. Consistently, MAG size and diversity decrease with increasing temperature, indicating a downcore winnowing of the subsurface biosphere. By contrast, specific archaeal MAGs within the Thermoproteota and Hadarchaeota increase in relative abundance and in recruitment of transcriptome reads towards deeper, hotter sediments, marking the transition towards a specialized deep, hot biosphere.

Suggested Citation

  • Paraskevi Mara & David Geller-McGrath & Virginia Edgcomb & David Beaudoin & Yuki Morono & Andreas Teske, 2023. "Metagenomic profiles of archaea and bacteria within thermal and geochemical gradients of the Guaymas Basin deep subsurface," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43296-x
    DOI: 10.1038/s41467-023-43296-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43296-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43296-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karen G. Lloyd & Lars Schreiber & Dorthe G. Petersen & Kasper U. Kjeldsen & Mark A. Lever & Andrew D. Steen & Ramunas Stepanauskas & Michael Richter & Sara Kleindienst & Sabine Lenk & Andreas Schramm , 2013. "Predominant archaea in marine sediments degrade detrital proteins," Nature, Nature, vol. 496(7444), pages 215-218, April.
    2. Yuki Morono & Motoo Ito & Tatsuhiko Hoshino & Takeshi Terada & Tomoyuki Hori & Minoru Ikehara & Steven D’Hondt & Fumio Inagaki, 2020. "Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Ying-Li Zhou & Paraskevi Mara & Guo-Jie Cui & Virginia P. Edgcomb & Yong Wang, 2022. "Microbiomes in the Challenger Deep slope and bottom-axis sediments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Karthik Anantharaman & Christopher T. Brown & Laura A. Hug & Itai Sharon & Cindy J. Castelle & Alexander J. Probst & Brian C. Thomas & Andrea Singh & Michael J. Wilkins & Ulas Karaoz & Eoin L. Brodie , 2016. "Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    5. F. Beulig & F. Schubert & R. R. Adhikari & C. Glombitza & V. B. Heuer & K.-U. Hinrichs & K. L. Homola & F. Inagaki & B. B. Jørgensen & J. Kallmeyer & S. J. E. Krause & Y. Morono & J. Sauvage & A. J. S, 2022. "Rapid metabolism fosters microbial survival in the deep, hot subseafloor biosphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Nina Dombrowski & Andreas P. Teske & Brett J. Baker, 2018. "Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying-Li Zhou & Paraskevi Mara & Guo-Jie Cui & Virginia P. Edgcomb & Yong Wang, 2022. "Microbiomes in the Challenger Deep slope and bottom-axis sediments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Xianzhe Gong & Álvaro Rodríguez Río & Le Xu & Zhiyi Chen & Marguerite V. Langwig & Lei Su & Mingxue Sun & Jaime Huerta-Cepas & Valerie Anda & Brett J. Baker, 2022. "New globally distributed bacterial phyla within the FCB superphylum," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Kelly J. Whaley-Martin & Lin-Xing Chen & Tara Colenbrander Nelson & Jennifer Gordon & Rose Kantor & Lauren E. Twible & Stephanie Marshall & Sam McGarry & Laura Rossi & Benoit Bessette & Christian Baro, 2023. "O2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Yan-Ling Qi & Ya-Ting Chen & Yuan-Guo Xie & Yu-Xian Li & Yang-Zhi Rao & Meng-Meng Li & Qi-Jun Xie & Xing-Ru Cao & Lei Chen & Yan-Ni Qu & Zhen-Xuan Yuan & Zhi-Chao Xiao & Lu Lu & Jian-Yu Jiao & Wen-She, 2024. "Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. S. Emil Ruff & Pauline Humez & Isabella Hrabe Angelis & Muhe Diao & Michael Nightingale & Sara Cho & Liam Connors & Olukayode O. Kuloyo & Alan Seltzer & Samuel Bowman & Scott D. Wankel & Cynthia N. Mc, 2023. "Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Ming Peng & Chun-Yang Li & Xiu-Lan Chen & Beth T. Williams & Kang Li & Ya-Nan Gao & Peng Wang & Ning Wang & Chao Gao & Shan Zhang & Marie C. Schoelmerich & Jillian F. Banfield & J. Benjamin Miller & N, 2022. "Insights into methionine S-methylation in diverse organisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Helena Osterholz & Stephanie Turner & Linda J. Alakangas & Eva-Lena Tullborg & Thorsten Dittmar & Birgitta E. Kalinowski & Mark Dopson, 2022. "Terrigenous dissolved organic matter persists in the energy-limited deep groundwaters of the Fennoscandian Shield," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Anna Sobek & Sebastian Abel & Hamed Sanei & Stefano Bonaglia & Zhe Li & Gisela Horlitz & Arka Rudra & Kazumasa Oguri & Ronnie N. Glud, 2023. "Organic matter degradation causes enrichment of organic pollutants in hadal sediments," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Zongzhi Wu & Tang Liu & Qian Chen & Tianyi Chen & Jinyun Hu & Liyu Sun & Bingxue Wang & Wenpeng Li & Jinren Ni, 2024. "Unveiling the unknown viral world in groundwater," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yunxi Liu & R. A. Leo Elworth & Michael D. Jochum & Kjersti M. Aagaard & Todd J. Treangen, 2022. "De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Morten Kam Dahl Dueholm & Marta Nierychlo & Kasper Skytte Andersen & Vibeke Rudkjøbing & Simon Knutsson & Mads Albertsen & Per Halkjær Nielsen, 2022. "MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Ernestina Hauptfeld & Nikolaos Pappas & Sandra Iwaarden & Basten L. Snoek & Andrea Aldas-Vargas & Bas E. Dutilh & F. A. Bastiaan Meijenfeldt, 2024. "Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Natasha K. Dudek & Jesus G. Galaz-Montoya & Handuo Shi & Megan Mayer & Cristina Danita & Arianna I. Celis & Tobias Viehboeck & Gong-Her Wu & Barry Behr & Silvia Bulgheresi & Kerwyn Casey Huang & Wah C, 2023. "Previously uncharacterized rectangular bacterial structures in the dolphin mouth," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Marie C. Schoelmerich & Heleen T. Ouboter & Rohan Sachdeva & Petar I. Penev & Yuki Amano & Jacob West-Roberts & Cornelia U. Welte & Jillian F. Banfield, 2022. "A widespread group of large plasmids in methanotrophic Methanoperedens archaea," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Paraskevi N. Polymenakou & Paraskevi Nomikou & Haris Zafeiropoulos & Manolis Mandalakis & Thekla I. Anastasiou & Stephanos Kilias & Nikos C. Kyrpides & Georgios Kotoulas & Antoniοs Magoulas, 2021. "The Santorini Volcanic Complex as a Valuable Source of Enzymes for Bioenergy," Energies, MDPI, vol. 14(5), pages 1-12, March.
    16. Na Yang & Yongxin Lv & Mukan Ji & Shiguo Wu & Yu Zhang, 2024. "High hydrostatic pressure stimulates microbial nitrate reduction in hadal trench sediments under oxic conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43296-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.