IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46897-2.html
   My bibliography  Save this article

High hydrostatic pressure stimulates microbial nitrate reduction in hadal trench sediments under oxic conditions

Author

Listed:
  • Na Yang

    (Shanghai Jiao Tong University)

  • Yongxin Lv

    (Shanghai Jiao Tong University)

  • Mukan Ji

    (Lanzhou University)

  • Shiguo Wu

    (Chinese Academy of Science)

  • Yu Zhang

    (Shanghai Jiao Tong University
    Polar Research Institute of China, Ministry of Natural Resources
    Shanghai Jiao Tong University)

Abstract

Hadal trenches are extreme environments situated over 6000 m below sea surface, where enormous hydrostatic pressure affects the biochemical cycling of elements. Recent studies have indicated that hadal trenches may represent a previously overlooked source of fixed nitrogen loss; however, the mechanisms and role of hydrostatic pressure in this process are still being debated. To this end, we investigate the effects of hydrostatic pressure (0.1 to 115 MPa) on the chemical profile, microbial community structure and functions of surface sediments from the Mariana Trench using a Deep Ocean Experimental Simulator supplied with nitrate and oxygen. We observe enhanced denitrification activity at high hydrostatic pressure under oxic conditions, while the anaerobic ammonium oxidation – a previously recognized dominant nitrogen loss pathway – is not detected. Additionally, we further confirm the simultaneous occurrence of nitrate reduction and aerobic respiration using a metatranscriptomic dataset from in situ RNA-fixed sediments in the Mariana Trench. Taken together, our findings demonstrate that hydrostatic pressure can influence microbial contributions to nitrogen cycling and that the hadal trenches are a potential nitrogen loss hotspot. Knowledge of the influence of hydrostatic pressure on anaerobic processes in oxygenated surface sediments can greatly broaden our understanding of element cycling in hadal trenches.

Suggested Citation

  • Na Yang & Yongxin Lv & Mukan Ji & Shiguo Wu & Yu Zhang, 2024. "High hydrostatic pressure stimulates microbial nitrate reduction in hadal trench sediments under oxic conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46897-2
    DOI: 10.1038/s41467-024-46897-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46897-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46897-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying-Li Zhou & Paraskevi Mara & Guo-Jie Cui & Virginia P. Edgcomb & Yong Wang, 2022. "Microbiomes in the Challenger Deep slope and bottom-axis sediments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Sobek & Sebastian Abel & Hamed Sanei & Stefano Bonaglia & Zhe Li & Gisela Horlitz & Arka Rudra & Kazumasa Oguri & Ronnie N. Glud, 2023. "Organic matter degradation causes enrichment of organic pollutants in hadal sediments," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Paraskevi Mara & David Geller-McGrath & Virginia Edgcomb & David Beaudoin & Yuki Morono & Andreas Teske, 2023. "Metagenomic profiles of archaea and bacteria within thermal and geochemical gradients of the Guaymas Basin deep subsurface," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46897-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.