IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42875-2.html
   My bibliography  Save this article

Learning few-shot imitation as cultural transmission

Author

Listed:
  • Avishkar Bhoopchand

    (Google DeepMind)

  • Bethanie Brownfield

    (Google DeepMind)

  • Adrian Collister

    (Google DeepMind)

  • Agustin Dal Lago

    (Google DeepMind)

  • Ashley Edwards

    (Google DeepMind)

  • Richard Everett

    (Google DeepMind)

  • Alexandre Fréchette

    (Google DeepMind)

  • Yanko Gitahy Oliveira

    (Google DeepMind)

  • Edward Hughes

    (Google DeepMind)

  • Kory W. Mathewson

    (Google DeepMind)

  • Piermaria Mendolicchio

    (Google DeepMind)

  • Julia Pawar

    (Google DeepMind)

  • Miruna Pȋslar

    (Google DeepMind)

  • Alex Platonov

    (Google DeepMind)

  • Evan Senter

    (Google DeepMind)

  • Sukhdeep Singh

    (Google DeepMind)

  • Alexander Zacherl

    (Google DeepMind)

  • Lei M. Zhang

    (Google DeepMind)

Abstract

Cultural transmission is the domain-general social skill that allows agents to acquire and use information from each other in real-time with high fidelity and recall. It can be thought of as the process that perpetuates fit variants in cultural evolution. In humans, cultural evolution has led to the accumulation and refinement of skills, tools and knowledge across generations. We provide a method for generating cultural transmission in artificially intelligent agents, in the form of few-shot imitation. Our agents succeed at real-time imitation of a human in novel contexts without using any pre-collected human data. We identify a surprisingly simple set of ingredients sufficient for generating cultural transmission and develop an evaluation methodology for rigorously assessing it. This paves the way for cultural evolution to play an algorithmic role in the development of artificial general intelligence.

Suggested Citation

  • Avishkar Bhoopchand & Bethanie Brownfield & Adrian Collister & Agustin Dal Lago & Ashley Edwards & Richard Everett & Alexandre Fréchette & Yanko Gitahy Oliveira & Edward Hughes & Kory W. Mathewson & P, 2023. "Learning few-shot imitation as cultural transmission," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42875-2
    DOI: 10.1038/s41467-023-42875-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42875-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42875-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oriol Vinyals & Igor Babuschkin & Wojciech M. Czarnecki & Michaël Mathieu & Andrew Dudzik & Junyoung Chung & David H. Choi & Richard Powell & Timo Ewalds & Petko Georgiev & Junhyuk Oh & Dan Horgan & M, 2019. "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Nature, vol. 575(7782), pages 350-354, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    2. Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Daphne Cornelisse & Thomas Rood & Mateusz Malinowski & Yoram Bachrach & Tal Kachman, 2022. "Neural Payoff Machines: Predicting Fair and Stable Payoff Allocations Among Team Members," Papers 2208.08798, arXiv.org.
    4. Weisheng Chiu & Thomas Chun Man Fan & Sang-Back Nam & Ping-Hung Sun, 2021. "Knowledge Mapping and Sustainable Development of eSports Research: A Bibliometric and Visualized Analysis," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    5. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    6. Bossert, Leonie & Hagendorff, Thilo, 2021. "Animals and AI. The role of animals in AI research and application – An overview and ethical evaluation," Technology in Society, Elsevier, vol. 67(C).
    7. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    8. Constantin Waubert de Puiseau & Richard Meyes & Tobias Meisen, 2022. "On reliability of reinforcement learning based production scheduling systems: a comparative survey," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 911-927, April.
    9. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    10. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    11. Raeid Saqur, 2024. "What Teaches Robots to Walk, Teaches Them to Trade too -- Regime Adaptive Execution using Informed Data and LLMs," Papers 2406.15508, arXiv.org.
    12. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    13. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    15. Geng, Yini & Liu, Yifan & Lu, Yikang & Shen, Chen & Shi, Lei, 2022. "Reinforcement learning explains various conditional cooperation," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    16. János Kramár & Tom Eccles & Ian Gemp & Andrea Tacchetti & Kevin R. McKee & Mateusz Malinowski & Thore Graepel & Yoram Bachrach, 2022. "Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Boian Lazov, 2023. "A Deep Reinforcement Learning Trader without Offline Training," Papers 2303.00356, arXiv.org.
    18. Qingyan Li & Tao Lin & Qianyi Yu & Hui Du & Jun Li & Xiyue Fu, 2023. "Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control," Energies, MDPI, vol. 16(10), pages 1-23, May.
    19. Michael Curry & Alexander Trott & Soham Phade & Yu Bai & Stephan Zheng, 2022. "Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning," Papers 2201.01163, arXiv.org, revised Feb 2022.
    20. Rodrick Wallace, 2022. "How AI founders on adversarial landscapes of fog and friction," The Journal of Defense Modeling and Simulation, , vol. 19(3), pages 519-538, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42875-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.