IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.00356.html
   My bibliography  Save this paper

A Deep Reinforcement Learning Trader without Offline Training

Author

Listed:
  • Boian Lazov

Abstract

In this paper we pursue the question of a fully online trading algorithm (i.e. one that does not need offline training on previously gathered data). For this task we use Double Deep $Q$-learning in the episodic setting with Fast Learning Networks approximating the expected reward $Q$. Additionally, we define the possible terminal states of an episode in such a way as to introduce a mechanism to conserve some of the money in the trading pool when market conditions are seen as unfavourable. Some of these money are taken as profit and some are reused at a later time according to certain criteria. After describing the algorithm, we test it using the 1-minute-tick data for Cardano's price on Binance. We see that the agent performs better than trading with randomly chosen actions on each timestep. And it does so when tested on the whole dataset as well as on different subsets, capturing different market trends.

Suggested Citation

  • Boian Lazov, 2023. "A Deep Reinforcement Learning Trader without Offline Training," Papers 2303.00356, arXiv.org.
  • Handle: RePEc:arx:papers:2303.00356
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.00356
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
    2. Oriol Vinyals & Igor Babuschkin & Wojciech M. Czarnecki & Michaël Mathieu & Andrew Dudzik & Junyoung Chung & David H. Choi & Richard Powell & Timo Ewalds & Petko Georgiev & Junhyuk Oh & Dan Horgan & M, 2019. "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Nature, vol. 575(7782), pages 350-354, November.
    3. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    4. János Kramár & Tom Eccles & Ian Gemp & Andrea Tacchetti & Kevin R. McKee & Mateusz Malinowski & Thore Graepel & Yoram Bachrach, 2022. "Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
    6. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Weichao Mao & Tamer Başar, 2023. "Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games," Dynamic Games and Applications, Springer, vol. 13(1), pages 165-186, March.
    8. Christoph Graf & Viktor Zobernig & Johannes Schmidt & Claude Klöckl, 2024. "Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 529-576, February.
    9. Liu, Bokai & Wang, Yizheng & Rabczuk, Timon & Olofsson, Thomas & Lu, Weizhuo, 2024. "Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks," Renewable Energy, Elsevier, vol. 220(C).
    10. Wang, Xin & Liu, Shuo & Yu, Yifan & Yue, Shengzhi & Liu, Ying & Zhang, Fumin & Lin, Yuanshan, 2023. "Modeling collective motion for fish schooling via multi-agent reinforcement learning," Ecological Modelling, Elsevier, vol. 477(C).
    11. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    12. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    13. Pedro Afonso Fernandes, 2024. "Forecasting with Neuro-Dynamic Programming," Papers 2404.03737, arXiv.org.
    14. Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
    15. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    16. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    17. Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
    18. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    19. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    20. Thomas P. Novak & Donna L. Hoffman, 2019. "Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects," Journal of the Academy of Marketing Science, Springer, vol. 47(2), pages 216-237, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.00356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.