IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i8d10.1007_s10845-023-02197-y.html
   My bibliography  Save this article

Predictive reinforcement learning: map-less navigation method for mobile robot

Author

Listed:
  • Dmitrii Dobriborsci

    (Deggendorf Institute of Technology)

  • Roman Zashchitin

    (Deggendorf Institute of Technology)

  • Mikhail Kakanov

    (Deggendorf Institute of Technology)

  • Wolfgang Aumer

    (Deggendorf Institute of Technology)

  • Pavel Osinenko

    (Skolkovo Institute of Technology)

Abstract

The application of reinforcement learning in mobile robotics faces the challenges of real-world physical environments, in contrast to playground setups like video games. In a mobile robot motion control, it is not always possible to perform episodes of pre-training in large amounts due to time, resource limitations or other concerns. Control methods that rely on a prior explicit map may be impractical or even impossible to use for new dynamic environments. In this paper, we present a method of local navigation approach for driving a robot to a desired position without relying on an explicit map of the environment. Only the laser scan measurements were used to determine the obstacles. We focus in this work on online methods of reinforcement learning which do not require running the robot in full episodes until success or failure. However, the price for such an online capability is that some model knowledge about the environment has to be utilized. Here, we propose an algorithm called stacked Q-learning, which unifies aspects of standard reinforcement learning techniques with model-based predictive agents. We compare this algorithm to a classical model predictive controller. The comparison focuses on the accumulated cost of parking the robot avoiding obstacles. The results look promising as the stacked Q-learning beat its counterpart, model predictive control, yet being of the same computational complexity. The suggested agent design of stacked Q-learning can thus be taken as a foundation for a class of predictive reinforcement learning methods.

Suggested Citation

  • Dmitrii Dobriborsci & Roman Zashchitin & Mikhail Kakanov & Wolfgang Aumer & Pavel Osinenko, 2024. "Predictive reinforcement learning: map-less navigation method for mobile robot," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4217-4232, December.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02197-y
    DOI: 10.1007/s10845-023-02197-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02197-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02197-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    2. Oriol Vinyals & Igor Babuschkin & Wojciech M. Czarnecki & Michaël Mathieu & Andrew Dudzik & Junyoung Chung & David H. Choi & Richard Powell & Timo Ewalds & Petko Georgiev & Junhyuk Oh & Dan Horgan & M, 2019. "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Nature, vol. 575(7782), pages 350-354, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    4. Christoph Graf & Viktor Zobernig & Johannes Schmidt & Claude Klöckl, 2024. "Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 529-576, February.
    5. Wang, Xin & Liu, Shuo & Yu, Yifan & Yue, Shengzhi & Liu, Ying & Zhang, Fumin & Lin, Yuanshan, 2023. "Modeling collective motion for fish schooling via multi-agent reinforcement learning," Ecological Modelling, Elsevier, vol. 477(C).
    6. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    7. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. János Kramár & Tom Eccles & Ian Gemp & Andrea Tacchetti & Kevin R. McKee & Mateusz Malinowski & Thore Graepel & Yoram Bachrach, 2022. "Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Weichao Hu & Hongzhang Mu & Yanyan Chen & Yixin Liu & Xiaosong Li, 2023. "Modeling Interactions of Autonomous/Manual Vehicles and Pedestrians with a Multi-Agent Deep Deterministic Policy Gradient," Sustainability, MDPI, vol. 15(7), pages 1-14, April.
    10. Malte Reinschmidt & József Fortágh & Andreas Günther & Valentin V. Volchkov, 2024. "Reinforcement learning in cold atom experiments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
    12. Mohit Sewak & Sanjay K. Sahay & Hemant Rathore, 2023. "Deep Reinforcement Learning in the Advanced Cybersecurity Threat Detection and Protection," Information Systems Frontiers, Springer, vol. 25(2), pages 589-611, April.
    13. Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    14. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    15. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    16. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    17. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    18. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    19. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    20. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02197-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.