IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42383-3.html
   My bibliography  Save this article

Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries

Author

Listed:
  • Jiarui He

    (The University of Texas at Austin)

  • Amruth Bhargav

    (The University of Texas at Austin)

  • Laisuo Su

    (The University of Texas at Austin)

  • Harry Charalambous

    (Argonne National Laboratory)

  • Arumugam Manthiram

    (The University of Texas at Austin)

Abstract

Ambient-temperature sodium-sulfur (Na-S) batteries are potential attractive alternatives to lithium-ion batteries owing to their high theoretical specific energy of 1,274 Wh kg−1 based on the mass of Na2S and abundant sulfur resources. However, their practical viability is impeded by sodium polysulfide shuttling. Here, we report an intercalation-conversion hybrid positive electrode material by coupling the intercalation-type catalyst, MoTe2, with the conversion-type active material, sulfur. In addition, MoTe2 nanosheets vertically grown on graphene flakes offer abundant active catalytic sites, further boosting the catalytic activity for sulfur redox. When used as a composite positive electrode and assembled in a coin cell with excess Na, a discharge capacity of 1,081 mA h gs−1 based on the mass of S with a capacity fade rate of 0.05% per cycle over 350 cycles at 0.1 C rate in a voltage range of 0.8 to 2.8 V is realized under a high sulfur loading of 3.5 mg cm−2 and a lean electrolyte condition with an electrolyte-to-sulfur ratio of 7 μL mg−1. A fundamental understanding of the electrocatalysis of MoTe2 is further revealed by in-situ synchrotron-based operando X-ray diffraction and ex-situ time-of-flight secondary ion mass spectrometry.

Suggested Citation

  • Jiarui He & Amruth Bhargav & Laisuo Su & Harry Charalambous & Arumugam Manthiram, 2023. "Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42383-3
    DOI: 10.1038/s41467-023-42383-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42383-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42383-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaofu Xu & Dong Zhou & Xianying Qin & Kui Lin & Feiyu Kang & Baohua Li & Devaraj Shanmukaraj & Teofilo Rojo & Michel Armand & Guoxiu Wang, 2018. "A room-temperature sodium–sulfur battery with high capacity and stable cycling performance," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Su, Laisuo & Choi, Paul & Nakamura, Nathan & Charalambous, Harry & Litster, Shawn & Ilavsky, Jan & Reeja-Jayan, B., 2021. "Multiscale operando X-ray investigations provide insights into electro-chemo-mechanical behavior of lithium intercalation cathodes," Applied Energy, Elsevier, vol. 299(C).
    3. Weijiang Xue & Zhe Shi & Liumin Suo & Chao Wang & Ziqiang Wang & Haozhe Wang & Kang Pyo So & Andrea Maurano & Daiwei Yu & Yuming Chen & Long Qie & Zhi Zhu & Guiyin Xu & Jing Kong & Ju Li, 2019. "Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities," Nature Energy, Nature, vol. 4(5), pages 374-382, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuruo Qi & Qing-Jie Li & Yuanke Wu & Shu-juan Bao & Changming Li & Yuming Chen & Guoxiu Wang & Maowen Xu, 2021. "A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Huang Zhang & Thomas Diemant & Bingsheng Qin & Huihua Li & R. Jürgen Behm & Stefano Passerini, 2020. "Solvent-Dictated Sodium Sulfur Redox Reactions: Investigation of Carbonate and Ether Electrolytes," Energies, MDPI, vol. 13(4), pages 1-12, February.
    3. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yuhua Xia & Mengzheng Ouyang & Vladimir Yufit & Rui Tan & Anna Regoutz & Anqi Wang & Wenjie Mao & Barun Chakrabarti & Ashkan Kavei & Qilei Song & Anthony R. Kucernak & Nigel P. Brandon, 2022. "A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Huanxin Li & Yi Gong & Haihui Zhou & Jing Li & Kai Yang & Boyang Mao & Jincan Zhang & Yan Shi & Jinhai Deng & Mingxuan Mao & Zhongyuan Huang & Shuqiang Jiao & Yafei Kuang & Yunlong Zhao & Shenglian Lu, 2023. "Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Byong-June Lee & Chen Zhao & Jeong-Hoon Yu & Tong-Hyun Kang & Hyean-Yeol Park & Joonhee Kang & Yongju Jung & Xiang Liu & Tianyi Li & Wenqian Xu & Xiao-Bing Zuo & Gui-Liang Xu & Khalil Amine & Jong-Sun, 2022. "Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Chao Ye & Huanyu Jin & Jieqiong Shan & Yan Jiao & Huan Li & Qinfen Gu & Kenneth Davey & Haihui Wang & Shi-Zhang Qiao, 2021. "A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    9. Xue, Weijiang & Chen, Tianwu & Ren, Zhichu & Kim, So Yeon & Chen, Yuming & Zhang, Pengcheng & Zhang, Sulin & Li, Ju, 2020. "Molar-volume asymmetry enabled low-frequency mechanical energy harvesting in electrochemical cells," Applied Energy, Elsevier, vol. 273(C).
    10. Chao Ye & Huan Li & Yujie Chen & Junnan Hao & Jiahao Liu & Jieqiong Shan & Shi-Zhang Qiao, 2024. "The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Jiaxuan Wang & Feng Hao, 2023. "Experimental Investigations on the Chemo-Mechanical Coupling in Solid-State Batteries and Electrode Materials," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Liu, Ying & Lee, Dong Jun & Ahn, Hyo-Jun & Nam, Sang Yong & Cho, Kwon-Koo & Ahn, Jou-Hyeon, 2023. "Waste coffee grounds-derived carbon: Nanoarchitectured pore-structure regulation for sustainable room-temperature sodium–sulfur batteries," Renewable Energy, Elsevier, vol. 212(C), pages 865-874.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42383-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.