IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06443-3.html
   My bibliography  Save this article

A room-temperature sodium–sulfur battery with high capacity and stable cycling performance

Author

Listed:
  • Xiaofu Xu

    (Tsinghua University
    Tsinghua University)

  • Dong Zhou

    (University of Technology Sydney)

  • Xianying Qin

    (Tsinghua University
    Tsinghua University)

  • Kui Lin

    (Tsinghua University
    Tsinghua University)

  • Feiyu Kang

    (Tsinghua University
    Tsinghua University)

  • Baohua Li

    (Tsinghua University
    Tsinghua University)

  • Devaraj Shanmukaraj

    (Parque Tecnológico de Álava)

  • Teofilo Rojo

    (Parque Tecnológico de Álava)

  • Michel Armand

    (Parque Tecnológico de Álava)

  • Guoxiu Wang

    (University of Technology Sydney)

Abstract

High-temperature sodium–sulfur batteries operating at 300–350 °C have been commercially applied for large-scale energy storage and conversion. However, the safety concerns greatly inhibit their widespread adoption. Herein, we report a room-temperature sodium–sulfur battery with high electrochemical performances and enhanced safety by employing a “cocktail optimized” electrolyte system, containing propylene carbonate and fluoroethylene carbonate as co-solvents, highly concentrated sodium salt, and indium triiodide as an additive. As verified by first-principle calculation and experimental characterization, the fluoroethylene carbonate solvent and high salt concentration not only dramatically reduce the solubility of sodium polysulfides, but also construct a robust solid-electrolyte interface on the sodium anode upon cycling. Indium triiodide as redox mediator simultaneously increases the kinetic transformation of sodium sulfide on the cathode and forms a passivating indium layer on the anode to prevent it from polysulfide corrosion. The as-developed sodium–sulfur batteries deliver high capacity and long cycling stability.

Suggested Citation

  • Xiaofu Xu & Dong Zhou & Xianying Qin & Kui Lin & Feiyu Kang & Baohua Li & Devaraj Shanmukaraj & Teofilo Rojo & Michel Armand & Guoxiu Wang, 2018. "A room-temperature sodium–sulfur battery with high capacity and stable cycling performance," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06443-3
    DOI: 10.1038/s41467-018-06443-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06443-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06443-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiarui He & Amruth Bhargav & Laisuo Su & Harry Charalambous & Arumugam Manthiram, 2023. "Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yuruo Qi & Qing-Jie Li & Yuanke Wu & Shu-juan Bao & Changming Li & Yuming Chen & Guoxiu Wang & Maowen Xu, 2021. "A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Suwan Lu & Yang Liu & Jingjing Xu & Shixiao Weng & Jiangyan Xue & Lingwang Liu & Zhicheng Wang & Can Qian & Guochao Sun & Yiwen Gao & Qingyu Dong & Hong Li & Xiaodong Wu, 2024. "Design towards recyclable micron-sized Na2S cathode with self-refinement mechanism," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Huang Zhang & Thomas Diemant & Bingsheng Qin & Huihua Li & R. Jürgen Behm & Stefano Passerini, 2020. "Solvent-Dictated Sodium Sulfur Redox Reactions: Investigation of Carbonate and Ether Electrolytes," Energies, MDPI, vol. 13(4), pages 1-12, February.
    5. Liu, Ying & Lee, Dong Jun & Ahn, Hyo-Jun & Nam, Sang Yong & Cho, Kwon-Koo & Ahn, Jou-Hyeon, 2023. "Waste coffee grounds-derived carbon: Nanoarchitectured pore-structure regulation for sustainable room-temperature sodium–sulfur batteries," Renewable Energy, Elsevier, vol. 212(C), pages 865-874.
    6. Chao Ye & Huan Li & Yujie Chen & Junnan Hao & Jiahao Liu & Jieqiong Shan & Shi-Zhang Qiao, 2024. "The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Chao Ye & Huanyu Jin & Jieqiong Shan & Yan Jiao & Huan Li & Qinfen Gu & Kenneth Davey & Haihui Wang & Shi-Zhang Qiao, 2021. "A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Yuhua Xia & Mengzheng Ouyang & Vladimir Yufit & Rui Tan & Anna Regoutz & Anqi Wang & Wenjie Mao & Barun Chakrabarti & Ashkan Kavei & Qilei Song & Anthony R. Kucernak & Nigel P. Brandon, 2022. "A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06443-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.